Skip to main content
Log in

Oceanobacillus halophilum sp. nov. Isolated from a Mangrove Forest Soil

Current Microbiology Aims and scope Submit manuscript

Abstract

A halophilic, aerobic bacterium, designated GD01T, was isolated from a mangrove forest soil near the South China Sea. Cells of strain GD01T were Gram staining positive, oxidase positive, and catalase positive. The strain was rod shaped and motile by means of peritrichous flagella and produced ellipsoidal endospores. The strain was able to grow with NaCl at concentrations of 0.5–12 % (optimum 3–5 %, w/v), at temperatures of 20–50 °C (optimum 30 °C), and at pH 6.0–8.5 (optimum pH 7.0). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain GD01T formed a cluster with O. profundus DSM 18246T (96.4 % 16S rRNA gene sequence similarity), O. caeni KCTC 13061T (95.4 %), and O. oncorhynchi JCM 12661T (94.5 %). The G+C content of strain GD01T was 38.7 mol%. The major respiratory quinone was MK-7. The major cellular fatty acids (>5 %) were anteiso-C15:0, iso-C16:0 (13.7 %), anteiso-C17:0 (12.6 %), iso-C15:0 (9.9 %), iso-C14:0 (9.5 %), and C16:0 (5.0 %). The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, glycolipid, four unknown lipids, and four unknown phospholipids. Based on phenotypic characteristics, chemotaxonomic features, and phylogenetic analysis based on 16S rRNA gene sequences, the strain was identified to represent a distinct novel species in the genus Oceanobacillus, and the name proposed is Oceanobacillus halophilum sp. nov. with type train GD01T (=CCTCC AB 2012863T = KCTC 33101T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Romano I, Lama L, Nicolaus B, Pol A (2006) Oceanobacillus oncorhynchi subsp. incaldanensis subsp. nov., an alkalitolerant halophile isolated from an algal mat collected from a sulfurous spring in Campania (Italy), and emended description of Oceanobacillus oncorhynchi. Int J Syst Evol Microbiol 56:805–810

    Article  CAS  PubMed  Google Scholar 

  2. Yumoto I, Horota K, Nodasaka Y, Nakajima K (2005) Oceanobacillus oncorhynchi sp. nov., a halotolerant obligate alkaliphile isolated from the skin of a rainbow trout (Oncorhynchus mykiss), and emended description of the genus Oceanobacillus. Int J Syst Evol Microbiol 55:1521–1524

    Article  CAS  PubMed  Google Scholar 

  3. Heyrman J, Logan NA, Busse H-J, Lebbe L, Rodriguez-Diaz M, Swings J, De Vos P (2003) Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus Salibacillus to Virgibacillus, as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens comb. nov., and emended description of the genus Virgibacillus. Int J Syst Evol Microbiol 53:501–511

    Article  CAS  PubMed  Google Scholar 

  4. Lee JS, Lim JM, Lee KC, Lee JC, Park YH, Kim CJ (2006) Virgibacillus koreensis sp. nov., a novel bacterium from a salt field, and transfer of Virgibacillus picturae to the genus Oceanobacillus as Oceanobacillus picturae comb. nov. with emended descriptions. Int J Syst Evol Microbiol 56:251–257

    Article  CAS  PubMed  Google Scholar 

  5. Raats D, Halpern M (2007) Oceanobacillus chironomi sp. nov., a halotolerant and facultatively alkaliphilic species isolated from a chironomid egg mass. Int J Syst Evol Microbiol 57:255–259

    Article  CAS  PubMed  Google Scholar 

  6. Kim Y-G, Choi DH, Hyun S, Cho BC (2007) Oceanobacillus profundus sp. nov., isolated from a deep-sea sediment core. Int J Syst Evol Microbiol 57:409–413

    Article  CAS  PubMed  Google Scholar 

  7. Nam J-H, Bae W, Lee D-H (2008) Oceanobacillus caeni sp. nov., isolated from a Bacillus-dominated wastewater treatment system in Korea. Int J Syst Evol Microbiol 58:1109–1113

    Article  CAS  PubMed  Google Scholar 

  8. Lu J, Nogi Y, Takami H (2001) Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiol Lett 205:291–297

    Article  CAS  PubMed  Google Scholar 

  9. Vaz-Moreira I, Figueira V, Lopes AR, Lobo-da-Cunha A, Spröer C, Schumann P, Nunes OC, Manaia CM (2012) Bacillus purgationiresistans sp. nov., isolated from a drinking-water treatment plant. Int J Syst Evol Microbiol 62:71–77

    Article  CAS  PubMed  Google Scholar 

  10. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  11. Breznak JA, Costilow RN (1994) Physicochemical factors in growth. In: Gerhardt RGE, Murray WA, Wood NRK (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 137–154

    Google Scholar 

  12. McCarthy AJ, Cross T (1984) A taxonomic study of Thermomonospora and other monosporic actinomycetes. J Gen Microbiol 130:5–25

    Google Scholar 

  13. Dong X, Cai M (2001) Determination of biochemical properties. In: Hansche PE, Allard RW (eds) Manual for the systematic identification of general bacteria. Science Press, Beijing, pp 364–398

    Google Scholar 

  14. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  15. Baker GC, Smith JJ, Cowan DA (2003) Review and reanalysis of domain-specific 16S primers. J Microbiol Methods 55:541–555

    Article  CAS  PubMed  Google Scholar 

  16. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeom YS, Lee JH, Yi H, Won S, Chun H (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  17. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetic analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  20. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  21. Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967

    CAS  Google Scholar 

  22. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  23. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  24. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI, Newark

    Google Scholar 

  25. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    Article  CAS  PubMed  Google Scholar 

  26. Tamaoka J, Katayama-Fujimura Y, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36

    Article  CAS  Google Scholar 

  27. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty-acid and polar lipid-composition in the classification of Cellulomonas, Oerskovia and related taxa. J ApplMicrobiol 47:87–95

    CAS  Google Scholar 

  28. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  29. Hirota K, Aino K, Nodasaka Y, Yumoto I (2012) Oceanobacillus indicireducens sp. nov., a facultatively alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 63(Pt 4):1437–1442. doi:10.1099/ijs.0.034579-0

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Projects of the National Science & Technology Pillar Program of China (2012BAD14B16) and the Science and Technology Planning Project of Guangdong Province, China (2012B010500035 and 2012B010500036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shungui Zhou.

Additional information

Jia Tang and Guiqin Yang have contributed equally to this study.

The GenBank Accession Number for the 16S rRNA gene sequence of O. halophilum GD01T is JX274441.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 437 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, J., Yang, G., Wang, Y. et al. Oceanobacillus halophilum sp. nov. Isolated from a Mangrove Forest Soil. Curr Microbiol 68, 629–634 (2014). https://doi.org/10.1007/s00284-014-0518-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0518-7

Keywords

Navigation