Skip to main content
Log in

Fructophilic Characteristics of Fructobacillus spp. may be due to the Absence of an Alcohol/Acetaldehyde Dehydrogenase Gene (adhE)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Fructophilic strains of Leuconostoc spp. have recently been reclassified to a new genus, i.e., Fructobacillus. Members of the genus are differentiated from Leuconostoc spp. by their preference for fructose on growth, requirement of an electron acceptor for glucose metabolism, and the inability to produce ethanol from the fermentation of glucose. In the present study, enzyme activities and genes involved in ethanol production were studied, since this is the key pathway for NAD+/NADH cycling in heterofermentative lactic acid bacteria. Fructobacillus spp. has a weak alcohol dehydrogenase activity and has no acetaldehyde dehydrogenase activity, whereas both enzymes are active in Leuconostoc mesenteroides. The bifunctional alcohol/acetaldehyde dehydrogenase gene, adhE, was described in Leuconostoc spp., but not in Fructobacillus spp. These results suggested that, due to the deficiency of the adhE gene, the normal pathway for ethanol production is absent in Fructobacillus spp. This leads to a shortage of NAD+, and the requirement for an electron acceptor in glucose metabolism. Fructophilic characteristics, as observed for Fructobacillus spp., are thus due to the absence of the adhE gene, and a phenotype that most likely evolved as a result of regressive evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

LAB:

Lactic acid bacteria

FLAB:

Fructophilic lactic acid bacteria

GIT:

Gastrointestinal tracts

ADH:

Alcohol dehydrogenase

ALDH:

Acetaldehyde dehydrogenase

References

  1. Endo A, Okada S, Morita H (2007) Molecular profiling of Lactobacillus, Streptococcus, and Bifidobacterium species in feces of active racehorses. J Gen Appl Microbiol 53:191–200

    Article  CAS  PubMed  Google Scholar 

  2. Endo A, Okada S (2008) Reclassification of the genus Leuconostoc, and proposals of Fructobacillus fructosus gen. nov., comb. nov., Fructobacillus durionis comb. nov., Fructobacillus ficulneus comb. nov. and Fructobacillus pseudoficulneus comb. nov. Int J Syst Evolution Microbiol 58:2195–2205

    Article  CAS  Google Scholar 

  3. Endo A, Futagawa-Endo Y, Dicks LMT (2009) Isolation and characterization of fructophilic lactic acid bacteria from fructose-rich niches. Syst Appl Microbiol 32:593–600

    Article  CAS  PubMed  Google Scholar 

  4. Endo A, Futagawa-Endo Y, Sakamoto M, Kitahara M, Dicks LMT (2010) Lactobacillus florum sp. nov., a novel fructophilic species isolated from flowers. Int J Syst Evol Microbiol 60:2478–2482

    Article  CAS  PubMed  Google Scholar 

  5. Endo A, Irisawa T, Futagawa-Endo Y, Sonomoto K, Itoh K, Takano K, Okada S, Dicks LMT (2011) Fructobacillus tropaeoli sp. nov., a novel fructophilic lactic acid bacterium isolated from a flower. Int J Syst Evol Microbiol 61:898–902

    Article  CAS  PubMed  Google Scholar 

  6. Endo A, Irisawa T, Futagawa-Endo Y, Takano K, du Toit M, Okada S, Dicks LMT (2012) Characterization and emended description of Lactobacillus kunkeei as a fructophilic lactic acid bacterium. Int J Syst Evol Microbiol 62:500–504

    Article  PubMed  Google Scholar 

  7. Hammes WP, Hertel C (2006) The genera Lactobacillus and Carnobacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryote, vol 4, 3rd edn. Springer, New York, pp 320–403

    Chapter  Google Scholar 

  8. He H, Chen Y, Zhang Y, Wei C (2011) Bacteria associated with gut lumen of Camponotus japonicus Mayr. Environ Entomol 40:1405–1409

    Article  CAS  PubMed  Google Scholar 

  9. Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, Decaris B, Bolotin A, Delorme C, Dusko Ehrlich S, Guédon E, Monnet V, Renault P, Kleerebezem M (2005) New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29:4435–4463

    Google Scholar 

  10. Koo OK, Jeong D-W, Lee JM, Kim MJ, Lee J-H, Chang HC, Kim JH, Lee HJ (2005) Cloning and characterization of the bifunctional alcohol/acetaldehyde dehydrogenase gene (adhE) in Leuconostoc mesenteroides isolated from kimchi. Biotechnol Lett 27:505–510

    Article  CAS  PubMed  Google Scholar 

  11. Neveling DP, Endo A, Dicks LM (2012) Fructophilic Lactobacillus kunkeei and Lactobacillus brevis isolated from fresh flowers, bees and bee-hives. Curr Microbiol 65:507–515

    Article  CAS  PubMed  Google Scholar 

  12. Nomura M, Kobayashi M, Narita T, Kimoto-Nira H, Okamoto T (2006) Phenotypic and molecular characterization of Lactococcus lactis from milk and plants. J Appl Microbiol 101:396–405

    Article  CAS  PubMed  Google Scholar 

  13. Papalexandratou Z, Falony G, Romanens E, Jimenez JC, Amores F, Daniel HM, De Vuyst L (2011) Species diversity, community dynamics, and metabolite kinetics of the microbiota associated with traditional ecuadorian spontaneous cocoa bean fermentations. Appl Environ Microbiol 77:7698–7714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  15. Slattery L, O’Callaghan J, Fitzgerald GF, Beresford T, Ross RP (2010) Invited review: Lactobacillus helveticus-a thermophilic dairy starter related to gut bacteria. J Dairy Sci 93:4435–4454

    Article  CAS  PubMed  Google Scholar 

  16. Thaochan N, Drew RA, Hughes JM, Vijaysegaran S, Chinajariyawong A (2010) Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies, Bactrocera cacuminata and B. tryoni. J Insect Sci 10:131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, Nicolas P, Robert C, Oztas S, Mangenot S, Couloux A, Loux V, Dervyn R, Bossy R, Bolotin A, Batto JM, Walunas T, Gibrat JF, Bessières P, Weissenbach J, Ehrlich SD, Maguin E (2006) The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci USA 103:9274–9279

    Article  PubMed  Google Scholar 

  18. Vogel RF, Pavlovic M, Ehrmann MA, Wiezer A, Liesegang H, Offschanka S, Voget S, Angelov A, Böcker G, Liebl W (2011) Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs. Microb Cell Fact 30(Suppl 1):S6

    Article  Google Scholar 

  19. Zaunmüller T, Eichert M, Richter H, Unden G (2006) Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl Micobiol Biotechnol 72:421–429

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. S. Deane (University of Stellenbosch) for assistance on the Southern blot hybridization and to Prof. Y. Niimura and Dr. S. Kawasaki (Tokyo University of Agriculture) for valuable advices on determination of enzyme activities. This study was partially supported by the South Africa/Japan Science and Technology Agency Cooperation Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihito Endo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endo, A., Tanaka, N., Oikawa, Y. et al. Fructophilic Characteristics of Fructobacillus spp. may be due to the Absence of an Alcohol/Acetaldehyde Dehydrogenase Gene (adhE). Curr Microbiol 68, 531–535 (2014). https://doi.org/10.1007/s00284-013-0506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0506-3

Keywords

Navigation