Current Microbiology

, Volume 68, Issue 2, pp 247–253 | Cite as

Differential Radio-Tolerance of Nutrition-Induced Morphotypes of Deinococcus radiodurans R1

  • Sudhir K. Shukla
  • G. Gomathi Sankar
  • A. Paraneeiswaran
  • T. Subba Rao
Article

Abstract

Deinococcus radiodurans R1 is a highly radio-tolerant bacterium. Depending on the nutrient availability D. radiodurans R1 exists in three morphologies viz. monococcal, diplococcal and tetracoccal. In this study, we examined whether nutrition-induced morphotypes of D. radiodurans showed similar DNA damage upon gamma radiation exposure. Total DNA damage after radiation exposure was estimated by comparing percent double-strand breaks (DSBs) in genomic DNA. It was found that all three morphotypes exhibited different radiation tolerances which were also dependent on the radiation dose given. Monococcal forms were found to be most radio-tolerant at most of the tested radiation doses. Results showed that these nutrient-starved-condition induced morphotypes show lesser DNA DSBs upon irradiation, hence show higher radio-tolerance.

References

  1. 1.
    Appukuttan D, Rao AS, Apte SK (2006) Engineering of Deinococcus radiodurans R1 for bioprecipitation of uranium from dilute nuclear waste. Appl Environ Microbiol 72:7873–7878PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Bauermeister A, Moeller R, Reitz G, Sommer S, Rettberg P (2011) Effect of relative humidity on Deinococcus radiodurans’ resistance to prolonged desiccation, heat, ionizing, germicidal, and environmentally relevant UV radiation. Microb Ecol 61:715–722PubMedCrossRefGoogle Scholar
  3. 3.
    Brockmann-Gretza O, Kalinowski J (2006) Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase. BMC Genomics 7:230PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Daly MJ, Minton KW (1995) Interchromosomal recombination in the extremely radioresistant bacterium Deinococcus radiodurans. J Bacteriol 177:5495–5505PubMedCentralPubMedGoogle Scholar
  5. 5.
    Daly MJ, Minton KW (1996) An alternative pathway of recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 178:4461–4471PubMedCentralPubMedGoogle Scholar
  6. 6.
    Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Venkateswaran A, Hess M, Omelchenko MV, Kostandarithes HM, Makarova KS, Wackett LP, Fredrickson JK, Ghosal D (2004) Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:1025–1028PubMedCrossRefGoogle Scholar
  7. 7.
    Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li S-MW, Kemner KM (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5:e92PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Daly MJ, Ling O, Minton KW (1994) Interplasmidic recombination following irradiation of the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 176:7506–7515PubMedCentralPubMedGoogle Scholar
  9. 9.
    Eltsov M, Dubochet J (2005) Fine structure of the Deinococcus radiodurans nucleoid revealed by cryoelectron microscopy of vitreous sections. J Bacteriol 187:8047–8054PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Grimsley JK, Masters CI, Clark EP, Minton KW (1991) Analysis by pulsed-field gel electrophoresis of DNA double-strand breakage and repair in Deinococcus radiodurans and a radiosensitive mutant. Int J Radiat Biol 60:613–626PubMedCrossRefGoogle Scholar
  11. 11.
    Ito H, Watanabe H, Takehisa M, Iizuka H (1983) Isolation and identification of radiation-resistant cocci belonging to the genus Deinococcus from sewage sludges and animal feeds. Agric Biol Chem 47:1239–1247CrossRefGoogle Scholar
  12. 12.
    Janion C (2001) Some aspects of the SOS response system—a critical survey. Acta Biochim Pol 48:599–610PubMedGoogle Scholar
  13. 13.
    Jena SS, Joshi HM, Sabareesh KP, Tata BVR, Rao TS (2006) Dynamics of Deinococcus radiodurans under controlled growth conditions. Biophys J 91:2699–2707PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Joshi HM, Rao TS (2009) Nutrition induced pleomorphism and budding mode of reproduction in Deinococcus radiodurans. BMC Res Notes 2:123PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Lange CC, Wackett LP, Minton KW, Daly MJ (1998) Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat Biotechnol 16:929–933PubMedCrossRefGoogle Scholar
  16. 16.
    Levin-Zaidman S, Englander J, Shimoni E, Sharma AK, Minton KW, Minsky A (2003) Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science 299:254–256PubMedCrossRefGoogle Scholar
  17. 17.
    Liu Y, Zhou J, Omelchenko MV, Beliaev AS, Venkateswaran A, Stair J, Wu L, Thompson DK, Xu D, Rogozin IB (2003) Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci USA 100:4191–4196PubMedCrossRefGoogle Scholar
  18. 18.
    Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ (2001) Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65:44–79PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637PubMedCentralPubMedGoogle Scholar
  20. 20.
    Michaels ML, Miller JH (1992) The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J Bacteriol 174:6321–6325PubMedCentralPubMedGoogle Scholar
  21. 21.
    Minton KW, Daly MJ (1995) A model for repair of radiation-induced DNA double-strand breaks in the extreme radiophile Deinococcus radiodurans. Bioessays 17:457–464PubMedCrossRefGoogle Scholar
  22. 22.
    Minton KW (1994) DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol 13:9–15PubMedCrossRefGoogle Scholar
  23. 23.
    Minton KW (1996) Repair of ionizing-radiation damage in the radiation resistant bacterium Deinococcus radiodurans. Mutat Res 363:1–7PubMedCrossRefGoogle Scholar
  24. 24.
    Venkateswaran A, McFarlan SC, Ghosal D, Minton KW, Vasilenko A, Makarova K, Wackett LP, Daly MJ (2000) Physiologic determinants of radiation resistance in Deinococcus radiodurans. Appl Environ Microbiol 66:2620–2626PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Wang P, Schellhorn HE (1995) Induction of resistance to hydrogen peroxide and radiation in Deinococcus radiodurans. Can J Microbiol 41:170–176PubMedCrossRefGoogle Scholar
  26. 26.
    Zahradka K, Slade D, Bailone A, Sommer S, Averbeck D, Petranovic M, Lindner AB, Radman M (2006) Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443:569–573PubMedGoogle Scholar
  27. 27.
    Zimmerman JM, Battista JR (2005) A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae. BMC Microbiol 5:17PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sudhir K. Shukla
    • 1
  • G. Gomathi Sankar
    • 2
  • A. Paraneeiswaran
    • 3
  • T. Subba Rao
    • 1
  1. 1.Biofouling and Biofilm Processes Section, Water and Steam Chemistry DivisionBhabha Atomic Research CentreKalpakkamIndia
  2. 2.Department of BiotechnologyIIT MadrasChennaiIndia
  3. 3.Department of BiotechnologyPondicherry UniversityPuducherryIndia

Personalised recommendations