Skip to main content
Log in

Identification and Evaluation of Reference Genes for qRT-PCR Normalization in Ganoderma lucidum

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Quantitative real-time reverse transcription PCR (qRT-PCR) is a rapid, sensitive, and reliable technique for gene expression studies. The accuracy and reliability of qRT-PCR results depend on the stability of the reference genes used for gene normalization. Therefore, a systematic process of reference gene evaluation is needed. Ganoderma lucidum is a famous medicinal mushroom in East Asia. In the current study, 10 potential reference genes were selected from the G. lucidum genomic data. The sequences of these genes were manually curated, and primers were designed following strict criteria. The experiment was conducted using qRT-PCR, and the stability of each candidate gene was assessed using four commonly used statistical programs—geNorm, NormFinder, BestKeeper, and RefFinder. According to our results, PP2A was expressed at the most stable levels under different fermentation conditions, and RPL4 was the most stably expressed gene in different tissues. RPL4, PP2A, and β-tubulin are the most commonly recommended reference genes for normalizing gene expression in the entire sample set. The current study provides a foundation for the further use of qRT-PCR in G. lucidum gene analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  2. Boh B, Berovic M, Zhang J, Zhi-Bin L (2007) Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev 13:265–301

    Article  CAS  PubMed  Google Scholar 

  3. Cao S, Zhang X, Ye N, Fan X, Mou S, Xu D, Liang C, Wang Y, Wang W (2012) Evaluation of putative internal reference genes for gene expression normalization in Nannochloropsis sp. by quantitative real-time RT-PCR. Biochem Biophys Res Commun 424:118–123

    Article  CAS  PubMed  Google Scholar 

  4. Chen S, Xu J, Liu C et al (2012) Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun 3:913

    Article  PubMed Central  PubMed  Google Scholar 

  5. Carrillo-Casas Erika Margarita, Hernández-Castro Rigoberto, Suárez-Güemes Francisco, de la Peña-Moctezuma Alejandro (2008) Selection of the internal control gene for real-time quantitative RT-PCR assays in temperature treated Leptospira. Curr Microbiol 56:539–546

    Article  CAS  PubMed  Google Scholar 

  6. Fang QH, Zhong JJ (2002) Two-stage culture process for improved production of ganoderic acid by liquid fermentation of higher fungus Ganoderma lucidum. Biotechnol Prog 18:51–54

    Article  CAS  PubMed  Google Scholar 

  7. Ferguson JA, Boles TC, Adams CP, Walt DR (1996) A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nat Biotechnol 14:1681–1684

    Article  CAS  PubMed  Google Scholar 

  8. Han X, Lu M, Chen Y, Zhan Z, Cui Q, Wang Y (2012) Selection of reliable reference genes for gene expression studies using real-time PCR in tung tree during seed development. PLoS One 7:e43084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  CAS  PubMed  Google Scholar 

  10. Kim S, Song J, Choi HT (2004) Genetic transformation and mutant isolation in Ganoderma lucidum by restriction enzyme-mediated integration. FEMS Microbiol Lett 233:201–204

    Article  CAS  PubMed  Google Scholar 

  11. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestkeeper—Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  12. Qian J, Xu H, Song J, Xu J, Zhu Y, Chen S (2013) Genome-wide analysis of simple sequence repeats in the model medicinal mushroom Ganoderma lucidum. Gene 512:331–336

    Article  CAS  PubMed  Google Scholar 

  13. Sanodiya BS, Thakur GS, Baghel RK, Prasad GB, Bisen PS (2009) Ganoderma lucidum: a potent pharmacological macrofungus. Curr Pharm Biotechnol 10:717–742

    Article  CAS  PubMed  Google Scholar 

  14. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  15. Tasara T, Stephan R (2007) Evaluation of housekeeping genes in Listeria monocytogenes as potential internal control references for normalizing mRNA expression levels in stress adaptation models using real-time PCR. FEMS Microbiol Lett 269:265–272

    Article  CAS  PubMed  Google Scholar 

  16. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2012) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31:46–53

    Article  PubMed  Google Scholar 

  17. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034

    Article  PubMed Central  PubMed  Google Scholar 

  18. Wan H, Yuan W, Ruan M, Ye Q, Wang R, Li Z, Zhou G, Yao Z, Zhao J, Liu S, Yang Y (2011) Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochem Biophys Res Commun 416:24–30

    Article  CAS  PubMed  Google Scholar 

  19. Xie F, Sun G, Stiller JW, Zhang B (2011) Genome-wide functional analysis of the cotton transcriptome by creating an integrated EST database. PLoS ONE 6:e26980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Xu JW, Xu YN, Zhong JJ (2012) Enhancement of ganoderic acid accumulation by overexpression of an N-terminally truncated 3-hydroxy-3-methylglutaryl coenzyme a reductase gene in the basidiomycete Ganoderma lucidum. Appl Environ Microbiol 78:7968–7976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Xu Y, Zhu X, Gong Y, Xu L, Wang Y, Liu L (2012) Evaluation of reference genes for gene expression studies in radish (Raphanus sativus L.) using quantitative real-time PCR. Biochem Biophys Res Commun 424:398–403

    Article  CAS  PubMed  Google Scholar 

  22. Yuan JS, Reed A, Chen F, Stewart CN Jr (2006) Statistical analysis of real-time PCR data. BMC Bioinform 7:85

    Article  Google Scholar 

  23. Żyżyńska-Granica B, Koziak K (2012) Identification of suitable reference genes for real-time PCR analysis of statin-treated human umbilical vein endothelial cells. PLoS One 7:e51547

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for Changjiang Scholars and Innovative Research Team in University from Ministry of Education of China (Grant No. 2012IRT1150).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Xu or ShiLin Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 259 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Xu, Z., Zhu, Y. et al. Identification and Evaluation of Reference Genes for qRT-PCR Normalization in Ganoderma lucidum . Curr Microbiol 68, 120–126 (2014). https://doi.org/10.1007/s00284-013-0442-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0442-2

Keywords

Navigation