Skip to main content

Pseudomonas prosekii sp. nov., a Novel Psychrotrophic Bacterium from Antarctica

Abstract

During Czech expeditions at James Ross Island, Antarctica, in the years 2007–2009, the bacterial diversity of the genus Pseudomonas was studied. Twelve fluorescent Pseudomonas strains were isolated from various samples and were subjected to a detailed taxonomic study. A polyphasic approach included genotypic and phenotypic analyses. The genotypic analysis involved sequencing of rrs, rpoB and rpoD genes, DNA–DNA hybridization (DDH) studies as well as manual ribotyping using HindIII endonuclease. The phenotypic characterization included conventional tests as well as biotyping using the Biolog system, protein profiling by SDS-PAGE, and MALDI-TOF MS analysis. Our taxonomic study revealed that all isolates belonged to the same Pseudomonas species with psychrotrophic growth not exceeding 37 °C. The cultures showed a unique position among the phylogenetically related pseudomonads. DDH experiment between the proposed type strain of the antarctic isolates and the closest neighbour P. arsenicoxydans CCM 8423T showed only 40.9–50.1 % similarity, thus confirming that the characterized strains do not belong to the P. arsenicoxydans species. According to the results obtained we propose the name P. prosekii sp. nov. for this novel Pseudomonas taxon with type strain AN/28/1T (=CCM 7990T and LMG 26867T).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Altschul SF, Madden TL, Schaeffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Bozal N, Montes MJ, Mercade E (2007) Pseudomonas guineae sp. nov., a novel psychrotolerant bacterium from an Antarctic environment. Int J Syst Evol Micr 57:2609–2612

    Article  CAS  Google Scholar 

  3. 3.

    Brooks K, Sodeman T (1974) A rapid method for determining decarboxylase and dihydrolase activity. J Clin Pathol 27:148–152

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Caisová L, Komárek J, Elster J, Nedbalová L (2009) Two freshwater filamentous, branched green algae, newly discovered in Antarctica. In: Barták M, Hájek J, Váczi P (eds) Structure and function of Antarctic terrestrial ecosystems. Book of abstracts and contributed papers, Brno, pp 14–22

    Google Scholar 

  5. 5.

    Campos VL, Valenzuela C, Yarza F, Kämpfer F, Vidal R, Zaror C, Mondaca MA, Lopez-Lopez A, Rosselló-Móra R (2010) Pseudomonas arsenicoxydans sp. nov., an arsenite-oxidizing strain isolated from the Atacama desert. Syst Appl Microbiol 33:193–197

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Carrion O, Minana-Galbis D, Montes MJ, Mercade E (2011) Pseudomonas deceptionensis sp. nov., a psychrotolerant bacterium from the Antarctic. Int J Syst Evol Micr 61:2401–2405

    Article  CAS  Google Scholar 

  7. 7.

    Cashion P, Hodler-Franklin MA, McCully J, Franklin M (1977) A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Christensen WB (1946) Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52:461–466

    PubMed  CAS  Google Scholar 

  9. 9.

    Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Coenye T, Falsen E, Vancanneyt M, Hoste B, Govan JRW, Kersters K, Vandamme P (1999) Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Bacteriol 49:405–413

    PubMed  Article  Google Scholar 

  11. 11.

    Comte K, Šabacká M, Carré-Mlouka A, Elster J, Komárek J (2007) Relationships between the Arctic and the Antarctic cyanobacteria; three Phormidium-like strains evaluated by a polyphasic approach. FEMS Microbiol Ecol 59:366–376

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Cowan ST (1974) Cowan and Steel’s manual for the identification of medical bacteria. Cambridge university press, Cambridge

    Google Scholar 

  13. 13.

    Dabboussi F, Hamze M, Elomari M, Verhille S, Baida N, Izard D, Leclerc H (1999) Taxonomic study of bacteria isolated from Lebanese spring waters: proposal for Pseudomonas cedrella sp. nov. and P. orientalis sp. nov. Res Microbiol 150:303–316

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    PubMed  Article  Google Scholar 

  15. 15.

    Esposito RMM, Spaulding SA, McKnight DM, Van de Vijver B, Kopalova K, Lubinski D, Hall B, Whittaker T (2008) Inland diatoms from the McMurdo Dry Valleys and James Ross Island Antarctica. Botany 86(12):1378–1392

    Article  Google Scholar 

  16. 16.

    Ewing WH (1960) Enterobacteriaceae. Biochemical methods for group differentation. Public Health Service Publication No 734, CDC, Atlanta

  17. 17.

    Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Hugh R, Leifson E (1953) The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram–negative bacteria. J Bacteriol 66:24–26

    PubMed  CAS  Google Scholar 

  19. 19.

    Hughes MS, James G, Ball N, Scally M, Malik R, Wigney DI, Martin P, Chen S, Mitchell D, Love DN (2000) Identification by 16S rRNA gene analyses of a potential novel mycobacterial species as an etiological agent of canine leproid granuloma syndrome. J Clin Microbiol 38:953–959

    PubMed  CAS  Google Scholar 

  20. 20.

    Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Jones D, Pell PA, Sneath PHA (1991) Maintenance of bacteria on glass beads at −60°C to −76°C. In: Kirsop BE, Doyle A (eds) Maintenance of microorganism and cultured cells. a manual of laboratory methods, 2nd edn. Academic Press, London, p 45–50

  22. 22.

    King EO, Ward MK, Ranay DJ (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301

    PubMed  CAS  Google Scholar 

  23. 23.

    Kurup VP, Babcock JB (1979) Use of casein, tyrosine and hypoxanthine in the identification of nonfermentative Gram-negative bacilli. Med Microbiol Immunol 167:71–75

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Komárek J, Elster J, Komárek O (2008) Diversity of the cyanobacterial microflora of the northern part of James Ross Island, NW Weddell Sea, Antarctica. Polar Biol 31:853–865

    Article  Google Scholar 

  25. 25.

    Kopalová K, Elster J, Nedbalová L, Van de Vijver B (2009) Three new terrestrial diatom species from seepage areas on James Ross Island (Antarctic Peninsula Region). Diatom Res 24: 113–122

    Google Scholar 

  26. 26.

    Kopalová K, Nedbalová L, de Haan M, Van de Vijver B (2011) Description of five new species of the diatom genus Luticola (Bacillariophyta, Diadesmidaceae) found in lakes of James Ross Island (Maritime Antarctic Region). Phytotaxa 27:44–60

    Google Scholar 

  27. 27.

    Laichmanová M, Selbman L, Barták M (2009) Diversity of microfungi from James Ross Island, Antarctica. In: Barták M, Hájek J, Váczi P (eds) Structure and Function of Antarctic Terrestrial Ecosystems. Book of Abstracts and Contributed Papers, Brno, pp 10–13

    Google Scholar 

  28. 28.

    López NI, Pettinari MJ, Stackebrandt E, Tribelli PM, Põtter M, Steinbüchel A, Méndez BS (2009) Pseudomonas extremaustralis sp. nov., a Poly(3-hydroxybutyrate) producer isolated from an antarctic environment. Curr Microbiol 59:514–519

    PubMed  Article  Google Scholar 

  29. 29.

    Lowe GH (1962) The rapid detection of lactose fermantation in paracolon organisms by the demonstration of β-d-galactosidase. J Med Lab Technol 19:21

    PubMed  CAS  Google Scholar 

  30. 30.

    Mulet M, Bennasar A, Lalucat J, García-Valdés E (2009) An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. Mol Cell Probe 23:140–147

    Article  CAS  Google Scholar 

  31. 31.

    Oberhofer TR, Rowen JW (1974) Acetamid agar for differentiation of nonfermentative bacteria. Appl Microbiol 28:720–721

    PubMed  CAS  Google Scholar 

  32. 32.

    Owens JJ (1974) The egg-yolk reaction produced by several species of bacteria. J Appl Bacteriol 37:137–148

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Palleroni NJ (2010) The Pseudomonas Story. Environ Microbiol 12:1377–1383

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Páčová Z, Kocur M (1984) New medium for detection of esterase and gelatinase activity. Zb Bakt Hyg 258:69–73

    Google Scholar 

  35. 35.

    Pot B, Vandamme P, Kersters K (1994) Analysis of electrophoretic whole-organism protein fingerprints. In: Goodfellow M, O’Donnell AG (eds) Modern microbiological methods: chemical methods in prokaryotic systematics. Wiley, Chichester, pp 493–521

    Google Scholar 

  36. 36.

    Reddy GSN, Matsumoto GI, Schumann P, Stackenbrandt E, Shivaji S (2004) Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int J Syst Evol Microbiol 54:713–719

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  38. 38.

    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  39. 39.

    Sedláček I (2000) Biochemical and physiological properties of gram-negative nonfermenting rods. Remedia Klin Mikrobiol 3:89–93

    Google Scholar 

  40. 40.

    Sedláček I, Holochová P, Pantůček R, Švec P, Barták M (2011) Diversity of pink pigmented psychrophiles from Antarctica. Inaugural meeting of bergey’s international society for microbial systematics (BISMiS 2011). Book of abstracts, Peking, p 104

    Google Scholar 

  41. 41.

    Strunecký O, Elster J, Komárek J (2011) Taxonomic revision of the freshwater cyanobacterium Phormidium“murrayi = Wilmottia murrayi. Fottea 11:57–71

    Google Scholar 

  42. 42.

    Švec P, Sedláček I, Pantúček R, Devriese LA, Doškař J (2001) Evaluation of ribotyping for characterization and identification of Enterococcus haemoperoxidus and Enterococcus moraviensis strains. FEMS Microbiol Lett 203:23–27

    PubMed  Article  Google Scholar 

  43. 43.

    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Tashirev AB, Romanovskaia VA, Rokitko PV, Shilin SO, Chernaia NA, Tashireva AA (2010) Microbiological analysis of terrestrial biotopes of the Antarctic region. Mikrobiol Z 72:3–9

    Google Scholar 

  45. 45.

    Tayeb AL, Ageron E, Grimont F, Grimont PA (2005) Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 156:763–773

    Article  Google Scholar 

  46. 46.

    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Tvrzová L, Schumann P, Sproer C, Sedláček I, Páčová Z, Šedo O, Zdráhal Z, Steffen M, Lang E (2006) Pseudomonas moraviensis sp. nov. and Pseudomonas vranovensis sp. nov., soil bacteria isolated on nitroaromatic compounds, and emended description of Pseudomonas asplenii. Int J Syst Evol Microbiol 56:2657–2663

    PubMed  Article  Google Scholar 

  48. 48.

    Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  49. 49.

    Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Education, Youth and Sports of the Czech Republic (MSM0021622416 and LM2010009) and by CEITEC (Central European Institute of Technology) (CZ.1.05/1.1.00/02.0068 funded from the European Regional Development Fund). We also acknowledge DSMZ for revisions of the novel taxon description.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcel Kosina.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kosina, M., Barták, M., Mašlaňová, I. et al. Pseudomonas prosekii sp. nov., a Novel Psychrotrophic Bacterium from Antarctica. Curr Microbiol 67, 637–646 (2013). https://doi.org/10.1007/s00284-013-0406-6

Download citation

Keywords

  • Antarctic
  • Pseudomonas
  • Taxonomy
  • rpoB
  • rrs
  • rpoD