Skip to main content

Advertisement

Log in

Serological Cross-Reaction Between O-Antigens of Shigella dysenteriae Type 4 and an Environmental Escherichia albertii Isolate

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

An environmental freshwater bacterial isolate, DM104, appearing as Shigella-like colonies on selective agar plates was found to show strong and specific serological cross-reactivity with Shigella dysenteriae type 4. Biochemical identification according to the analytical profile index, molecular serotyping by restriction of the amplified O-antigen gene cluster (rfb-RFLP), together with phylogenetic analysis of the 16S rRNA gene and multi-locus sequence analysis, identified the isolate as Escherichia albertii. rfb-RFLP of DM104, revealed a profile different from that of S. dysenteriae type 4. However, western blot analysis of extracted lipopolysaccharides demonstrated strong cross-reactivity with S. dysenteriae type 4 using specific monovalent antisera and a lipopolysaccharide gel banding profile similar to that of S. dysenteriae type 4. The observed O-antigen cross-reaction between an E. albertii isolate and S. dysenteriae extends our knowledge of the extent of O-antigen cross-reaction within the Escherichia/Shigella group of organisms, and offers the possibility of using DM104 and similar cross-reacting strains as shigellosis vaccine candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Abbott SL, O’Connor J, Robin T et al (2003) Biochemical properties of a newly described Escherichia species, Escherichia albertii. J Clin Microbiol 41:4852–4854

    Article  PubMed  CAS  Google Scholar 

  2. Albert MJ, Alam K, Islam M et al (1991) Hafnia alvei, a probable cause of diarrhea in humans. Infect Immun 59:1507–1513

    PubMed  CAS  Google Scholar 

  3. Azmuda N, Rahman MZ, Sultana M et al (2012) Evidence of interspecies O-antigen gene cluster transfer between Shigella boydii 15 and Escherichia fergusonii. Acta Path Microbiol Scand 120:959–966

    CAS  Google Scholar 

  4. Bonny TS, Azmuda N, Khan SI et al (2010) Virulence of environmental Stenotrophomonas maltophilia serologically cross-reacting with Shigella-specific antisera. Pak J Biol Sci 13:937–945

    Article  PubMed  CAS  Google Scholar 

  5. Buchrieser C, Glaser P, Rusniok C et al (2000) The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol Microbiol 38:760–771

    Article  PubMed  CAS  Google Scholar 

  6. Cohen D, Ashkenazi S, Green MS et al (1997) Double-blind vaccine-controlled randomised efficacy trial of an investigational Shigella sonnei conjugate vaccine in young adults. Lancet 349:155–159

    Article  PubMed  CAS  Google Scholar 

  7. Coimbra RS, Grimont F, Grimont PAD et al (1999) Identification of Shigella serotypes by restriction of amplified O-antigen gene cluster. Res Microbiol 150:543–553

    Article  PubMed  CAS  Google Scholar 

  8. Coimbra RS, Lefevre M, Grimont F et al (2001) Clonal relationships among Shigella serotypes suggested by cryptic flagellin gene polymorphism. J Clin Microbiol 39:670–674

    Article  PubMed  CAS  Google Scholar 

  9. Ewing WH, Lindberg AA (1984) Serology of Shigella. Meth Microbiol 14:113–142

    Article  CAS  Google Scholar 

  10. Faruque SM, Khan R, Kamruzzaman M et al (2002) Isolation of Shigella dysenteriae type 1 and S. flexneri strains from surface waters in Bangladesh: comparative molecular analysis of environmental Shigella isolates versus clinical strains. Appl Environ Microbiol 68:3908–3913

    Article  PubMed  CAS  Google Scholar 

  11. Formal SB, Hale TL, Kapfer C (1989) Shigella vaccines. Rev Infect Dis 11(Suppl 3):S547–551

    Article  PubMed  Google Scholar 

  12. Green MS, Block C, Cohen D et al (1991) Four decades of shigellosis in Israel: epidemiology of a growing public health problem. Rev Infect Dis 13:248–253

    Article  PubMed  CAS  Google Scholar 

  13. Hale TL, Keren DF (1992) Pathogenesis and immunology in shigellosis: applications for vaccine development. Curr Top Microbiol Immunol 180:117–137

    Article  PubMed  CAS  Google Scholar 

  14. Islam MS, Jahid MIK, Rahman MM et al (2007) Biofilm acts as a microenvironment for plankton-associated Vibrio cholerae in the aquatic environment of Bangladesh. Microbiol Immunol 51:369–379

    PubMed  CAS  Google Scholar 

  15. Islam MS, Rahman MZ, Khan SI et al (2005) Organization of the CTX prophage in environmental isolates of Vibrio mimicus. Microbiol Immunol 49:779–784

    PubMed  CAS  Google Scholar 

  16. Islam MS, Talukder KA, Khan NH et al (2004) Variation of toxigenic Vibrio cholerae O1 in the aquatic environment of Bangladesh and its correlation with the clinical strains. Microbiol Immunol 48:773–777

    PubMed  CAS  Google Scholar 

  17. Islam MS, Tasmin R, Khan SI et al (2004) Pandemic strains of O3:K6 Vibrio parahaemolyticus in the aquatic environment of Bangladesh. Can J Microbiol 50:827–834

    Article  PubMed  CAS  Google Scholar 

  18. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  19. Le Gall T, Mavris M, Martino MC et al (2005) Analysis of virulence plasmid gene expression defines three classes of effectors in the type III secretion system of Shigella flexneri. Microbiology 151:951–962

    Article  PubMed  Google Scholar 

  20. Lan R, Stevenson G, Reeves PR (2003) Comparison of two major forms of the Shigella virulence plasmid pINV: positive selection is a major force driving the divergence. Infect Immun 7:6298–6306

    Article  Google Scholar 

  21. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics.”. John Wiley and Sons Ltd., New York, pp 115–147

    Google Scholar 

  22. Lefebvre J, Gosselin F, Ismail J et al (1995) Evaluation of commercial antisera for Shigella serogrouping. J Clin Microbiol 33:1997–2001

    PubMed  CAS  Google Scholar 

  23. Lindberg AA, Karnell A, Pal T et al (1990) Construction of an auxotrophic Shigella flexneri strain for use as a live vaccine. Microb Pathog 8:433–440

    Article  PubMed  CAS  Google Scholar 

  24. Machado J, Grimont F, Grimont PA (2000) Identification of Escherichia coli flagellar types by restriction of the amplified fliC gene. Res Microbiol 151:535–546

    Article  PubMed  CAS  Google Scholar 

  25. Melito PL, Woodward DL, Munro J et al (2005) A novel Shigella dysenteriae serovar isolated in Canada. J Clin Microbiol 43:740–744

    Article  PubMed  CAS  Google Scholar 

  26. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  27. Noriega FR, Wang JY, Losonsky G et al (1994) Construction and characterization of attenuated delta aroA delta virG Shigella flexneri 2a strain CVD 1203, a prototype live oral vaccine. Infect Immun 62:5168–5172

    PubMed  CAS  Google Scholar 

  28. Rahman MZ, Azmuda N, Hossain MJ et al (2011) Recovery and characterization of environmental variants of Shigella flexneri from surface water in Bangladesh. Curr Microbiol 63:372–376

    Article  PubMed  CAS  Google Scholar 

  29. Rahman MZ, Sultana M, Khan SI et al (2007) Serological cross-reactivity of environmental isolates of Enterobacter, Escherichia, Stenotrophomonas, and Aerococcus with Shigella spp.-specific antisera. Curr Microbiol 54:63–67

    Article  PubMed  CAS  Google Scholar 

  30. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  31. Sultana M, Rahman MZ, Birkeland NK et al (2005) Survival of Shigella flexneri cells in laboratory microcosms. J Biol Phys Chem 5:114–117

    Article  CAS  Google Scholar 

  32. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035

    Article  PubMed  CAS  Google Scholar 

  33. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  34. Verma NK, Lindberg AA (1991) Construction of aromatic dependent Shigella flexneri 2a live vaccine candidate strains: deletion mutations in the aroA and the aroD genes. Vaccine 9:6–9

    Article  PubMed  CAS  Google Scholar 

  35. Wirth T, Falush D, Lan RT et al (2006) Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 60:1136–1151

    Article  PubMed  CAS  Google Scholar 

  36. World Health Organization (2001) Waterborne disease surveillance: goal and strategies. Report on a meeting of a working group, Budapest, Hungary, 29–30 November 2001.

  37. World Health Organization (2003) Manual for the laboratory identification and antimicrobial susceptibility testing of bacterial pathogens of public health importance in the developing world. WHO/CDS/CSR/EPH/2002.15: 121–140

  38. World Health Organization (2005) Guidelines for the control of shigellosis, including epidemics due to Shigella dysenteriae type 1. 1–64

  39. Xu DQ, Cisar JO, Osorio M et al (2007) Core-linked LPS expression of Shigella dysenteriae serotype 1 O-antigen in live Salmonella typhi vaccine vector Ty21a: preclinical evidence of immunogenicity and protection. Vaccine 25:6167–6175

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by The Norwegian Programme for Development, Research and Higher Education (NUFU) (Grant No. 2007/10063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils-Kåre Birkeland.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 364 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, M.Z., Akter, S., Azmuda, N. et al. Serological Cross-Reaction Between O-Antigens of Shigella dysenteriae Type 4 and an Environmental Escherichia albertii Isolate. Curr Microbiol 67, 590–595 (2013). https://doi.org/10.1007/s00284-013-0405-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0405-7

Keywords

Profiles

  1. Selina Akter
  2. Nils-Kåre Birkeland