Skip to main content
Log in

Production of Calcite Nanocrystal by a Urease-Positive Strain of Enterobacter ludwigii and Study of Its Structure by SEM

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The present research aimed at evaluating the effects of urease enzyme and increasing pH on calcite nanocrystal formation. Unlike some researches, the results showed that CaCO3 precipitation is not a general phenomenon among the bacteria and if a bacterium has not this ability, it will not be able to produce calcite even with an increase in pH. All urease-positive bacteria had this ability, while only some urease-negative bacteria were able to produce calcite. Production and characterization of nanocrystals on precipitating medium were shown primarily by light microscopy and then confirmed by X-ray diffraction (XRD) analysis. Crystallite particle size was determined using Scherrer formula that was sub-100-nm in all samples. Based on qualitative and quantitative studies, strain C8 was selected as the best calcite-producing strain. Phylogenetic analysis indicated that this isolate has 99 % similarity with Enterobacter ludwigii. 16S rRNA sequence of isolate was deposited in GenBank with accession number JX666242. The morphology and exact composition of nanocrystalline particles were determined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). According to data obtained by SEM, we suggest that nanocrystals of CaCO3 adhere to bacteria and each other to form small aggregates and then complex crystalline networks to trap bacteria. Many holes are present in these crystalline networks that seem to be due to the aggregation of nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aloisi G, Gloter A, Kruger M, Wallmann K, Guyot F, Zuddas P (2006) Nucleation of calcium carbonate on bacterial nanoglobules. Geology 34:1017–1102

    Article  CAS  Google Scholar 

  2. Al-Thawadi SM (2011) Ureolytic bacteria and calcium carbonate formation as a mechanism of strength enhancement of sand. J Adv Sci Eng Res 1:98–114

    Google Scholar 

  3. Arp G, Hofmann J, Reitner J (1998) Microbial fabric formation in spring mounds (‘microbialites’) of alkaline salt lakes in the Badain Jaran Sand Sea, PR China. Palaios 13:581–592

    Article  Google Scholar 

  4. Banks ED, Taylor NM, Gulley J, Lubbers BR, Giarrizzo JG, Bullen HA, Hoehler TM, Barton HA (2010) Bacterial calcium carbonate precipitation in cave environments: a function of calcium homeostasis. Geomicrobiol J 27:444–454

    Article  CAS  Google Scholar 

  5. Barabesi C, Galizzi A, Mastromei G, Rossi M, Tamburini E, Perito B (2007) Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J Bacteriol 189:228–235

    Article  PubMed  CAS  Google Scholar 

  6. Barton HA, Spear JR, Pace NR (2001) Microbial life in the underworld: biogenicity in secondary mineral formations. Geomicrobiol J 18:359–368

    Article  CAS  Google Scholar 

  7. Bissett A, de Beer D, Schoon R, Shiraishi F, Reimer A, Arp G (2008) Microbial mediation of stromatolite formation in karst-water creeks. Limnol Oceanogr 53:1159–1168

    Article  CAS  Google Scholar 

  8. Braissant O, Decho AW, Przekop KM, Gallagher KL, Glunk C, Dupraz C, Visscher PT (2009) Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiol Ecol 67:293–307

    Article  PubMed  CAS  Google Scholar 

  9. Cacchio P, Ercole C, Cappuccio G, Lepidi A (2003) Calcium carbonate precipitation by bacterial strains isolated from a limestone cave and from a loamy soil. Geomicrobiol J 20:85–98

    Article  CAS  Google Scholar 

  10. Castanier S, Le Metayer-Levrel G, Perthuisot JP (1999) Ca-carbonates precipitation and limestone genesis: the microbiologist point of view. Sediment Geol 126:9–23

    Article  CAS  Google Scholar 

  11. Chahal N, Rajor A, Siddique R (2011) Calcium carbonate precipitation by different bacterial strains. Afr J Biotechnol 10:8359–8372

    CAS  Google Scholar 

  12. Chen L, Shen YH, Xie AJ, Huang B, Jia R, Guo RY, Tang WZ (2009) Bacteria-mediated synthesis of metal carbonate minerals with unusual morphologies and structures. Cryst Growth Des 9:743–754

    Article  CAS  Google Scholar 

  13. De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36:118–136

    Article  Google Scholar 

  14. Dick J, De Windt W, De Graef B, Saveyn H, Van der Meeren P, De Belie N, Verstraete W (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17:357–367

    Article  PubMed  CAS  Google Scholar 

  15. Ercole C, Cacchio P, Cappuccio G, Lepidi A (2001) Deposition of calcium carbonate in karst caves: role of bacteria in Stiffe’s Cave. Int J Speleol 30:69–79

    Article  Google Scholar 

  16. Fujita Y, Ferris FG, Lawson RD, Colwell FS, Smith RW (2000) Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol J 17:305–318

    Article  CAS  Google Scholar 

  17. Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1:3–7

    Article  CAS  Google Scholar 

  18. Jimenez-Lopez C, Rodriguez-Navarro C, Pinar G, Carrillo-Rosua FJ, Rodriguez-Gallego M, Gonzalez-Munoz MT (2007) Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere 68:1929–1936

    Article  PubMed  CAS  Google Scholar 

  19. Jimenez-Lopez C, Jroundi F, Pascolini C, Rodriguez-Navarro C, Pinar-Larrubia G, Rodriguez-Gallego M, Gonzalez-Munoz MT (2008) Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. Int Biodeterior Biodegrad 62:352–363

    Article  CAS  Google Scholar 

  20. Lee YN (2003) Calcite production by Bacillus amyloliquefaciens CMB01. J Microbiol 41:345–348

    CAS  Google Scholar 

  21. Leong DU, Greisen KS (1993) PCR detection of bacteria found in cerebrospinal fluid. In: Persing DH, Smith TF, Tenover FC, White TJ (eds) Diagnostic molecular microbiology: principles and applications. American Society for Microbiology, Washington, DC, pp 300–309

    Google Scholar 

  22. Li W, Liu LP, Zhou PP, Cao L, Yu LJ, Jiang SY (2011) Calcite precipitation induced by bacteria and bacterially produced carbonic anhydrase. Curr Sci 100:502–508

    CAS  Google Scholar 

  23. McConnaughey TA, Whelan JF (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci Rev 42:95–117

    Article  CAS  Google Scholar 

  24. Rivadeneyra MA, Perez-Garcia I, Salmeron V, Ramos-Cormenzana A (1985) Bacterial precipitation of calcium carbonate in presence of phosphate. Soil Biol Biochem 17:171–172

    Article  CAS  Google Scholar 

  25. Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, Gonzalez-Munoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microbiol 69:2182–2193

    Article  PubMed  CAS  Google Scholar 

  26. Tong H, Ma W, Wang L, Wan P, Hu J, Cao L (2004) Control over the crystal phase, shape, size and aggregation of calcium carbonate via a l-aspartic acid inducing process. Biomaterials 25:3923–3929

    Article  PubMed  CAS  Google Scholar 

  27. Uh Y, Lee CH, Lee MK, Park IG, Park DW, Yoon KJ (1998) Diagnosis of bacteremia by universal primer of eubacteria. Korean J Clin Pathol 18:195–200

    Google Scholar 

  28. Walenta G, Fullmann T (2004) Advances in quantitative XRD analysis for clinker, cements, and cementitious additions. ICDD Adv X-ray Anal 47:287–296

    CAS  Google Scholar 

  29. Wen ZF, Zhong JH, Li Y, Guo ZQ, Gao JB, Xu XL (2004) Current study on genesis and formation conditions of stromatolites. Geol J China Univ 10:418–428

    CAS  Google Scholar 

  30. Yaaghoobi M, Emtiazi G, Roghanian R (2012) A novel approach for aerobic construction of iron oxide nanoparticles by acinetobacter radioresistens and their effects on red blood cells. Curr Nanosci 8:286–291

    Article  CAS  Google Scholar 

  31. Yang JL, Wang MS, Cheng AC, Pan KC, Li CF, Deng SX (2008) A simple and rapid method for extracting bacterial DNA from intestinal microflora for ERIC-PCR detection. World J Gastroenterol 14:2872–2876

    Article  PubMed  CAS  Google Scholar 

  32. Yena FS, Chang PL, Yu PC, Yang RJ (2007) Characterization on microstructure homogeneity of θ-Al2O3 powder systems during phase transformation. Key Eng Mater 351:81–87

    Article  Google Scholar 

Download references

Acknowledgments

The current study was supported by Grant from the University of Isfahan to Sara Ghashghaei for obtaining M.Sc. degree. In addition, we would like to thank Gh. R. Ghezelbash from University of Isfahan for helping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giti Emtiazi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghashghaei, S., Emtiazi, G. Production of Calcite Nanocrystal by a Urease-Positive Strain of Enterobacter ludwigii and Study of Its Structure by SEM. Curr Microbiol 67, 406–413 (2013). https://doi.org/10.1007/s00284-013-0379-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0379-5

Keywords

Navigation