Skip to main content

Characterization of Cellulolytic Activities of Environmental Bacterial Consortia from an Argentinian Native Forest


Cellulolytic activities of three bacterial consortia derived from a forest soil sample from Chaco region, Argentina, were characterized. The phylogenetic analysis of consortia revealed two main highly supported groups including Achromobacter and Pseudomonas genera. All three consortia presented cellulolytic activity. The carboxymethylcellulase (CMCase) and total cellulase activities were studied both quantitatively and qualitatively and optimal enzymatic conditions were characterized and compared among the three consortia. Thermal and pH stability were analyzed. Based on its cellulolytic activity, one consortium was selected for further characterization by zymography. We detected a specific protein of 55 kDa with CMCase activity. In this study, we have shown that these consortia encode for cellulolytic enzymes. These enzymes could be useful for lignocellulosic biomass degradation into simple components and for different industrial applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7:715–723

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Barr BK, Hsieh YL, Ganem B, Wilson DB (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35:586–592

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Chen PJ, Wei TC, Chang YT, Lin LP (2004) Purification and characterization of carboxymethylcellulase from Sinorhizobium fredii. Bot Bull Acad Sin 45:111–118

    CAS  Google Scholar 

  4. 4.

    Delalibera I, Handelsman J, Raffa KF (2005) Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Environ Entomol 34:541–547

    Article  Google Scholar 

  5. 5.

    Doi RH (2008) Cellulases of mesophilic microorganisms: cellulosome and non-cellulosome producers. Ann NY Acad Sci 1125:267–279

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Ghio S, Sabarís Di Lorenzo GJ, Lia V, Talia P, Cataldi A, Grasso D, Campos E (2012) Isolation of Paenibacillus sp. and Variovorax sp. strains from decaying woods and characterization of their potential for cellulose deconstruction. Int J Biochem Mol Biol 3(4):352–364

    PubMed  CAS  Google Scholar 

  7. 7.

    Gjermansen M, Nilsson M, Yang L, Tolker-Nielsen T (2010) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol Microbiol 75(4):815–826

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Goldbeck R, Andrade CCP, Pereira GAG, Maugeri FF (2012) Screening and identification of cellulase producing yeast-like microorganisms from Brazilian biomes. Afr J Biotechnol 11(53):11595–11603. doi:10.5897//AJB12.422

    Article  CAS  Google Scholar 

  9. 9.

    Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Hankin L, Anagostakis SL (1977) Solid media containing carboxymethylcellulose to detect C. cellulase activity of microorganisms. J Gen Microbiol 98:109–115

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Herve C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP (2010) Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci 107:15293–15298

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Huang S, Sheng P, Zhang H (2012) Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Int J Mol Sci 13:2563–2577. doi:10.3390/ijms13032563

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr Microbiol 57:503–507. doi:10.1007/s00284-008-9276-8

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2005) Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol 71:7099–7106

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9(4):286–298

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Kerr RA (2011) Peak oil production may already be here. Science 331(384):1510–1511

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Kim SJ, Lee CM, Han BR, Kim MY, Yeo YS, Yoon SH, Koo BS, Jun HK (2008) Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol Lett 282(1):44–51

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    King BC, Donnelly MK, Bergstrom GC, Walker LP, Gibson DM (2009) An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts. Biotechnol Bioeng 102(4):1033–1044

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109(4):1083–1087. doi:10.1002/bit.24370

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Kuhad RC, Singh A, Eriksson KE (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol 57:45–125

    PubMed  CAS  Google Scholar 

  22. 22.

    Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzym Res 2011:1–10. doi:10.4061/2011/280696

    Article  Google Scholar 

  23. 23.

    Lednická D, Mergaert J, Cnockaert MC, Swings J (2000) Isolation and identification of cellulolytic bacteria involved in the degradation of natural cellulosic fibres. Syst Appl Microbiol 23(2):292–299

    PubMed  Article  Google Scholar 

  24. 24.

    Lopes F, Motta F, Andrade C, Rodrigues M, Maugeri-Filho F (2011) Thermo-stable xylanases from nonconventional yeasts. J Microb Biochem Technol 3(3):36–42

    CAS  Google Scholar 

  25. 25.

    Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Medie FM, Davies GJ, Drancourt M, Henrissat B (2012) Genome analyses highlight the different biological roles of cellulases. Nat Rev Microbiol 10(3):227–234. doi:10.1038/nrmicro2729

    Article  CAS  Google Scholar 

  27. 27.

    Mejia-Castillo T, Hidalgo-Lara ME, Brieba LG, Ortega-Lopez J (2008) Purification, characterization and modular organization of a cellulose-binding protein, CBP105, a processive β-1,4-endoglucanase from Cellulomonas flavigena. Biotechnol Lett 30:681–687. doi:10.1007/s10529-007-9589-x

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Meyers M, Poffe R, Verachtert H (1984) Properties of a cellulolytic Pseudomonas. Antonie Van Leeuwenhoek 50:301

    Article  Google Scholar 

  29. 29.

    Millward-Sadler SJ, Davidson K, Hazlewood GP, Black GW, Gilbert HJ, Clarke JH (1995) Novel cellulose-binding domains, NodB homologues and conserved modular architecture in xylanases from the aerobic soil bacteria Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus. Biochem J 312:39–48

    PubMed  CAS  Google Scholar 

  30. 30.

    Montastruc L, Nikov I (2006) Modeling of aromatic compound degradation by Pseudomonas putida ATCC 21812. Chem Ind Chem Eng Q 12:220–224

    Article  CAS  Google Scholar 

  31. 31.

    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Odier E, Janin G, Montes D (1981) Poplar lignin decomposition by gram-negative aerobic bacteria. Appl Environ Microbiol 41:337–341

    PubMed  CAS  Google Scholar 

  33. 33.

    Oliveira NA, Oliveira LA, Andrade JS, Chagas Júnior AF (2006) Extracellular hydrolytic enzymes in indigenous strains of rhizobia in Central Amazonia, Amazonas, Brazil. Ciênc Tecnol Aliment 26:853–860

    Article  Google Scholar 

  34. 34.

    Quiroz-Castañeda RE, Balcázar-López E, Dantán-González E, Martinez A, Folch-Mallol JL, Martínez-Anaya C (2009) Characterization of cellulolytic activities of Bjerkandera adusta and Pycnoporus sanguineus on solid wheat straw medium. Electron J Biotechnol 12(15):1–8

    Google Scholar 

  35. 35.

    Reese ET, Siu RGH, Levinson HS (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol 59:485–497

    PubMed  CAS  Google Scholar 

  36. 36.

    Rubin E (2008) Genomics of cellulosic biofuels. Nat Rev Microbiol 454:841–845

    CAS  Google Scholar 

  37. 37.

    Sindhu SS, Dadarwal KR (2001) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiol Res 156:353–358

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Singh A, Hayashi K (1995) Microbial cellulases: protein architecture, molecular properties, and biosynthesis. Adv Appl Microbiol 40:1–44

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Singh R, Kumar R, Bishnoi K, Bishnoi NR (2009) Optimization of synergistic parameters for thermostable cellulase activity of Aspergillus heteromorphus using response surface methodology. Biochem Eng J 48:28–35

    Article  CAS  Google Scholar 

  40. 40.

    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Talia P, Sede S, Campos E, Rorig M, Principi D, Daniela T, Hopp HE, Grasso D, Cataldi A (2012) Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes. Res Microbiol 163(1):221–232. doi:10.016/j.resmic.2011.12.001

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100(6):637–643

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780

    PubMed  CAS  Google Scholar 

  45. 45.

    Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ (2006) Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 11:1997–2011

    Article  Google Scholar 

  46. 46.

    Wood TM, McCrae SI, Bhat KM (1989) The mechanism of fungal cellulase action. Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose. Biochem J 260:37–43

    PubMed  CAS  Google Scholar 

  47. 47.

    Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86(1):88–95

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Yang H, Wu H, Wang X, Cui Z, Li Y (2011) Selection and characteristics of a switchgrass-colonizing microbial community to produce extracellular cellulases and xylanases. Bioresour Technol 102(3):3546–3550

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Zhou S, Ingram LO (2000) Synergistic hydrolysis of carboxymethyl cellulose and acid-swollen cellulose by two endoglucanases (CelZ and CelY) from Erwinia chrysanthemi. J Bacteriol 182:5676–5682

    PubMed  Article  CAS  Google Scholar 

Download references


This work was supported by grants from the Instituto Nacional de Tecnología Agropecuaria (INTA) (PN No. 141130 specific project), Argentina and by an international collaborative consortium by INTA-EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária). A. Cataldi, A. Gioffré, E. Campos, and S. Sede acknowledge CONICET as career research members. The authors acknowledge Dr. Silvio Cravero for useful technical advices and Dr. E. Hopp and Dr. Julia Sabio García for critical reading of the manuscript.

Author information



Corresponding author

Correspondence to Paola Talia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Romano, N., Gioffré, A., Sede, S.M. et al. Characterization of Cellulolytic Activities of Environmental Bacterial Consortia from an Argentinian Native Forest. Curr Microbiol 67, 138–147 (2013).

Download citation


  • Cellulase
  • Switchgrass
  • Avicel
  • Cellulolytic Enzyme
  • Total Kjeldahl Nitrogen