Skip to main content
Log in

Changes in Membrane Fatty Acid Composition of Pseudomonas aeruginosa in Response to UV-C Radiations

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The changes in lipid composition enable the micro-organisms to maintain membrane functions in the face of environmental fluctuations. The relationship between membrane fatty acid composition and UV-C stress was determined for mid-exponential phase and stationary phase Pseudomonas aeruginosa. The total lipids were obtained by dichloromethane/methanol (3:1) and were quantified by GC. The TLC analysis of phospholipids showed the presence of three major fractions phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. Significant modifications, as manifested by an increase of UFA, were obtained. Interestingly, this microorganism showed a remarkable capacity for recovery from the stressful effects of UV-C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  2. Cecchi G, Biasini S, Castano J (1985) Méthanolyse rapide des huiles en solvant. Note de laboratoire. Rev Fr Corps Gras 4:163–164

    Google Scholar 

  3. Dercovà K, Certik M, Malovà A, Sejàkovà Z (2004) Effect of chlorophénoles on the membrane lipids of bacterial cells. Int Biodeterior Biodegrad 54:251–254

    Article  Google Scholar 

  4. Dussault D, Caillet S, Tien CL, Lacroix M (2008) Carotenoids’ influence on radio tolerance of Pantoea agglomerans, a plant pathogen. Lett Appl Microbiol 47:208–213

    Article  PubMed  CAS  Google Scholar 

  5. Goldberg JB (2000) Pseudomonas: global bacteria. Trends Microbiol 8:55–57

    Article  PubMed  CAS  Google Scholar 

  6. Guerzoni ME, Lanciotti R, Cocconcelli PS (2001) Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology 147:2255–2264

    PubMed  CAS  Google Scholar 

  7. Hazel JR, Williams EE (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227

    Article  PubMed  CAS  Google Scholar 

  8. Imaly JA (2003) Pathways of oxidative damage. Ann Rev Microbiol 57:395–418

    Article  Google Scholar 

  9. John E, Cronan JR (1968) Phospholipid alterations during growth of Escherichia coli. J Bacteriol 95:2054–2061

    Google Scholar 

  10. Kanemasa Y, Akamatsu Y, Nojima S (1967) Composition and turnover of the phospholipids in Escherichia coli. Biochem Biophys Acta 144:382–390

    Article  PubMed  CAS  Google Scholar 

  11. Kanfer J, Kennedy E (1963) Metabolism and function of bacterial lipids. Metabolism of phospholipids in Escherichia coli. J Biol Chem 238:2919–2922

    PubMed  CAS  Google Scholar 

  12. Lazarova V, Savoye P, Janex ML, Blatchley ER, Pommepuy M (1999) Advanced wastewater disinfection technologies: state of the art and perspectives. Water Sci Technol 40:203–213

    CAS  Google Scholar 

  13. Liberti L, Notarnicola M, Petruzzelli D (2002) Advanced treatment for municipal wastewater reuse in agriculture, UV disinfection: parasite removal and by-product formation. Desalination 152:315–324

    Article  Google Scholar 

  14. Pagan R, Mackey B (2000) Relationship between membrane damage and cell death in pressure treated Escherichia coli cells: differences between exponential and stationary-phase cells and variations among strains. Appl Environ Microbiol 66:2829–2834

    Article  PubMed  CAS  Google Scholar 

  15. Pinkart HC, White DC (1997) Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains. J Bacteriol 179:4219–4226

    PubMed  CAS  Google Scholar 

  16. Russell NJ, Fukunaga NA (1990) Comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. Fed Eur Microbiol Rev 75:171–182

    Article  CAS  Google Scholar 

  17. Shigapova N, Torok Z, Balogh G, Goloubinoff P, Vígh L, Horváth I (2005) Membrane fluidization triggers membrane remodeling which affects the thermotolerance in Escherichia coli. Biochem Biophys Res Commun 328:1216–1223

    Article  PubMed  CAS  Google Scholar 

  18. Suutari M, Laakso S (1994) Microbial fatty acids and thermal adaptation. Crit Rev Microbiol 20:285–328

    Article  PubMed  CAS  Google Scholar 

  19. Tremoliers A, Lepage M (1971) Changes in lipid composition during greening of etiolated pea seedlings. Plant Physiol 47:329–334

    Article  Google Scholar 

  20. Weislander A, Rilfors L, Lindblom G (1986) Metabolic changes of membrane lipid composition in Acholeplasma laidlawii by hydrocarbons, alcohols and detergents for effects on lipid packing. Biochemistry 25:7511

    Article  Google Scholar 

  21. Wolfgang MC, Kulasekara BR, Liang X, Boyd D, Wu K, Yang Q, Miyada CG, Lory S (2003) Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. PNAS 100:8484–8489

    Article  PubMed  CAS  Google Scholar 

  22. Yatvin MB, Gipp JJ, Klessig DR, Dennis WH (1986) Hyperthermic sensitivity and growth stage in Escherichia coli. Radiat Res 106:78–88

    Article  PubMed  CAS  Google Scholar 

  23. Yutaka Y, Akihiko N, Kenji I, Hiroaki S (1997) Adaptive changes in membrane lipids of barophilic bacteria in response to changes in growth pressure. Appl Environ Microbiol 64:479–485

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelwaheb Chatti.

Additional information

Salma Kloula Ben Ghorbal and Abdelwaheb Chatti have contributed equally in this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghorbal, S.K.B., Chatti, A., Sethom, M.M. et al. Changes in Membrane Fatty Acid Composition of Pseudomonas aeruginosa in Response to UV-C Radiations. Curr Microbiol 67, 112–117 (2013). https://doi.org/10.1007/s00284-013-0342-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0342-5

Keywords

Navigation