Skip to main content

Isolation and Characterization of a Marine Cyclohexylacetate-Degrading Bacterium Lutimaribacter litoralis sp. nov., and Reclassification of Oceanicola pacificus as Lutimaribacter pacificus comb. nov.

Abstract

A novel aerobic, Gram-negative, non-motile, pleomorphic, and rod-shaped bacterium designated KU5D5T was isolated from seawater that was obtained from the coastal region of the Goto Islands, Japan, on the basis of its ability to utilize cyclohexylacetate as the sole source of carbon and energy. Strain KU5D5T grew at pH 6.0–8.0 and 10–35 °C in the presence of 1.0–5.0 % (w/v) NaCl. Analysis of the 16S rRNA gene sequence revealed that this strain was affiliated to the family Rhodobacteraceae in the class Alphaproteobacteria and was related most closely to Lutimaribacter saemankumensis (96.6 % similarity) and Oceanicola pacificus (96.6 %). The predominant respiratory lipoquinone was ubiquinone-10 and the major cellular fatty acids were C18:1 ω7c (66.7 %), C16:0 (7.7 %), C12:1 3-OH (6.1 %), and C17:0 (6.1 %). The DNA G+C content was 58.9 mol %. On the basis of physiological, chemotaxonomic, and phylogenetic data, strain KU5D5T is suggested to represent a novel species of the genus Lutimaribacter, for which the name Lutimaribacter litoralis sp. nov. is proposed. It is also proposed that O. pacificus should be transferred to the genus Lutimaribacter as Lutimaribacter pacificus comb. nov. The type strain of L. litoralis is KU5D5T (=JCM 17792T = KCTC 23660T) and the type strain of L. pacificus is W11-2BT (=CCTCC AB 208224T = LMG 24619T = MCCC 1A01034T).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Barrow GI, Feltham RKA (1993) Cowan and steel’s manual for the identification of medical bacteria, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. 2.

    Beam HW, Perry JJ (1974) Microbial degradation and assimilation of n-alkyl-substituted cycloparaffins. J Bacteriol 118:394–399

    PubMed  CAS  Google Scholar 

  3. 3.

    Cowan ST, Steel KJ (1965) Manual for the identification of medical bacteria. Cambridge University Press, London

    Google Scholar 

  4. 4.

    Dutta TK, Harayama S (2001) Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326. Appl Environ Microbiol 67:1970–1974

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:68–376

    Article  Google Scholar 

  6. 6.

    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  7. 7.

    Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  8. 8.

    Iwaki H, Nakai E, Nakamura S, Hasegawa Y (2008) Isolation and characterization of new cyclohexylacetic acid-degrading bacteria. Curr Microbiol 57:107–110

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Iwaki H, Nishimura A, Hasegawa Y (2012) Tropicibacter phthalicus sp. nov., a phthalate-degrading bacterium from seawater. Curr Microbiol 64:392–396

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Iwaki H, Takada K, Hasegawa Y (2012) Maricurvus nonylphenolicus gen. nov., sp. nov., a nonylphenol-degrading bacterium isolated from seawater. FEMS Microbiol Lett 327:142–147

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Katayama-Fujimura Y, Komatsu Y, Kuraishi H, Kaneko T (1984) Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 48:3169–3172

    Article  CAS  Google Scholar 

  12. 12.

    Kimura M (1980) A simple method of estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Koma D, Hasumi F, Chung SY, Kubo M (2003) Biodegradation of n-alkylcyclohexanes by co-oxidation via multiple pathways in Acinetobacter sp. ODDK71. J Biosci Bioeng 95:641–644

    PubMed  CAS  Google Scholar 

  14. 14.

    Koma D, Sakashita Y, Kubota K, Fujii Y, Hasumi F, Chung SY, Kubo M (2005) Degradation pathways of cyclic alkanes in Rhodococcus sp. NDKK48. Appl Microbiol Biotechnol 66:92–99

    Article  Google Scholar 

  15. 15.

    Lechner U, Baumbach R, Becker D, Kitunen V, Auling G, Salkinoja-Salonen M (1995) Degradation of 4-chloro-2-methylphenol by an activated sludge isolate and its taxonomic description. Biodegradation 6:83–92

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Nakagawa K, Kawasaki H (2001) Determination method of 16S rRNA gene sequence. In: The Society for Actinomycetes (ed.) The isolation and characterization of actinomycetes, Japan: Business Center for Academic Societies, pp.88–117.

  17. 17.

    Nishijima M, Araki-Sakai M, Sano H (1997) Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods 28:113–122

    Article  CAS  Google Scholar 

  18. 18.

    Ougham HJ, Trudgill PW (1982) Metabolism of cyclohexaneacetic acid and cyclohexanebutyric acid by Arthrobacter sp. strain CA1. J Bacteriol 150:1172–1182

    PubMed  CAS  Google Scholar 

  19. 19.

    Perry JJ (1984) Microbial metabolism of cyclic alkanes. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 61–98

    Google Scholar 

  20. 20.

    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  21. 21.

    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Tittsler RP, Sandholzer LA (1936) The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31:575–580

    PubMed  CAS  Google Scholar 

  23. 23.

    Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Yokota A, Akagawa-Matsushita M, Hiraishi A, Katayama Y, Urakami T, Yamasato K (1992) Distribution of quinone systems in microorganisms: gram-negative eubacteria. Bull Jpn Fed Cult Coll 8:136–171

    Google Scholar 

  25. 25.

    Yoon J-H, Kang S-J, Lee J-S, Oh T-K (2009) Lutimaribacter saemankumensis gen. nov., sp. nov., isolated from a tidal flat of the Yellow Sea. Int J Syst Evol Microbiol 59:48–52

    PubMed  Article  Google Scholar 

  26. 26.

    Yuan J, Lai Q, Wang B, Sun F, Liu X, Du Y, Li G, Gu L, Zheng T, Shao Z (2009) Oceanicola pacificus sp. nov., isolated from a deep-sea pyrene-degrading consortium. Int J Syst Evol Microbiol 59:1158–1161

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported in part by JSPS KAKENHI Grant Number 22780077 and by the Kansai University Expenditure for Cultivating Young Researchers, 2012.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Iwaki.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iwaki, H., Yasukawa, N., Fujioka, M. et al. Isolation and Characterization of a Marine Cyclohexylacetate-Degrading Bacterium Lutimaribacter litoralis sp. nov., and Reclassification of Oceanicola pacificus as Lutimaribacter pacificus comb. nov.. Curr Microbiol 66, 588–593 (2013). https://doi.org/10.1007/s00284-013-0321-x

Download citation

Keywords

  • Isoprenoid Quinone
  • KCTC 23660T
  • Major Cellular Fatty Acid
  • Cyclohexylacetate
  • Goto Island