Skip to main content

Advertisement

Log in

Inhibition of Ecto-Phosphatase Activity in Conidia Reduces Adhesion and Virulence of Metarhizium anisopliae on the Host Insect Dysdercus peruvianus

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Metarhizium anisopliae is an entomopathogenic fungus with the ability to infect a broad range of arthropods, and have evolved distinct strategies for their attachment to hosts. Here, we describe the characterisation of ecto-phosphatase activity on the conidia surface of M. anisopliae and its relevance in the host interaction process. Ecto-phosphatase activity was linear for 60 min and during this time, was linear with the increase of cell density. The optimum pH was in the acidic range and some divalent metals, such as Cu2+, Cd2+ and Zn2+, inhibited ecto-phosphatase activity. The activity was also reduced by phosphatase inhibitors. Importantly, the inhibition of phosphatase activity in conidia reduced the adhesion to Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) integument and, consequently and indirectly, M. anisopliae infection. The results herein presented show, for the first time, the importance of ecto-phosphatase activity in M. anisopliae conidia and provide the first evidence of its direct involvement in adhesion and host infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aguirre-García MM, Anaya-Ruiz M, Talamás-Rohana P (2003) Membrane-bound acid phosphatase (MAP) from Entamoeba histolytica has phosphotyrosine phosphatase activity and disrupts the actin cytoskeleton of host cells. Parasitology 126:195–202

    Article  PubMed  Google Scholar 

  2. Amazonas JN, Cosentino-Gomes D, Werneck-Lacerda A, Pinheiro AAD, Lanfredi-Rangel A, De Souza W, Meyer-Fernandes JR (2009) Giardia lamblia: characterization of ecto-phosphatase activities. Exp Parasitol 121:15–21

    Article  PubMed  CAS  Google Scholar 

  3. Arnold WN, Sakai KH, Mann LC (2012) Selective inactivation of an extra-cytoplasmic acid phosphatase of yeast-like cells of Sporothrix schenckii by sodium fluoride. J Gen Microbiol 133:1503–1509

    Google Scholar 

  4. Arruda W, Lübeck I, Schrank A, Vainstein MH (2005) Morphological alterations of Metarhizium anisopliae during penetration of Boophilus microplus ticks. Exp Appl Acarol 37:231–244

    Article  PubMed  Google Scholar 

  5. Bakalara N, Santarelli X, Davis C, Blatz T (2000) Purification, cloning, and characterization of an acidic ectoprotein phosphatase differentially expressed in the infectious bloodstream form of Trypanosoma brucei. J Biol Chem 275:8863–8871

    Article  PubMed  CAS  Google Scholar 

  6. Barros BHR, Silva SH, Marques ER, Rosa JC, Yatsuda AP, Roberts DW, Braga GUL (2010) A proteomic approach to identifying proteins differentially expressed in conidia and mycelium of the entomopathogenic fungus Metarhizium acridum. Fungal Biol 114:572–579

    Article  PubMed  CAS  Google Scholar 

  7. Bernard M, Mouyna I, Dubreucq G, Debeaaupuis JP, Fontaine T, Vorgias C, Fuglsang C, Latgé JP (2002) Characterization of a cell-wall acid phosphatase (PhoAp) in Aspergillus fumigatus. Microbiology 148:2819–2829

    PubMed  CAS  Google Scholar 

  8. Beys da Silva WO, Santi L, Schrank A, Vainstein MH (2010) Metarhizium anisopliae lipolytic activity plays a pivotal role in Rhipicephalus (Boophilus) microplus infection. Fungal Biol 114:10–15

    Article  PubMed  CAS  Google Scholar 

  9. Beys da Silva WO, Santi L, Corrêa AP, Silva LA, Bresciani FR, Schrank A, Vainstein MH (2010) The entomopathogen Metarhizium anisopliae can modulate the secretion of lipolytic enzymes in response to different substrates including components of arthropod cuticle. Fungal Biol 114:911–916

    Article  PubMed  Google Scholar 

  10. Brandão TA, Hengge AC, Johnson SJ (2010) Insights into the reaction of protein-tyrosine phosphatase 1B: crystal structures for transition state analogs of both catalytic steps. J Biol Chem 285:15874–15883

    Article  PubMed  Google Scholar 

  11. Broetto L, Da Silva WOB, Bailão AM, De Almeida Soares C, Vainstein MH, Schrank A (2010) Glyceraldehyde-3-phosphate dehydrogenase of the entomopathogenic fungus Metarhizium anisopliae: cell-surface localization and role in host adhesion. FEMS Microbiol Lett 312:101–109

    Article  PubMed  CAS  Google Scholar 

  12. Calhau C, Martel F, Pinheiro-Silva S, Pinheiro H, Soares-da-Silva P, Hipólito-Reis C, Azevedo I (2002) Modulation of insulin transport in rat brain microvessel endothelial cells by an ecto-phosphatase activity. J Cell Biochem 84:389–400

    Article  PubMed  CAS  Google Scholar 

  13. Collopy-Junior I, Esteves FF, Nimrichter L, Rodrigues ML, Alviano CS, Meyer-Fernandes JR (2006) An ectophosphatase activity in Cryptococcus neoformans. FEMS Yeast Res 6:1010–1017

    Article  PubMed  CAS  Google Scholar 

  14. Cosentino-Gomes D, Russo-Abrahão T, Fonseca-de-Souza AL, Ferreira CR, Galina A, Meyer-Fernandes JR (2009) Modulation of Trypanosoma rangeli ecto-phosphatase activity by hydrogen peroxide. Free Radical Biol Med 47:152–158

    Article  CAS  Google Scholar 

  15. Cosentino-Gomes D, Meyer-Fernandes JR (2011) Ecto-phosphatase in protozoan parasite: possible roles in nutrition, growth and ROS sensing. J Bioenerg Biomembr 43:89–92

    Article  PubMed  CAS  Google Scholar 

  16. De Almeida-Amaral EE, Belmont-Firpo R, Vannier-Santos MA, Meyer-Fernandes JR (2006) Leishmania amazonensis: characterization of an ecto-phosphatase activity. Exp Parasitol 114:334–340

    Article  PubMed  Google Scholar 

  17. Dick CF, Dos-Santos AL, Fonseca-de-Souza AL, Rocha-Ferreira J, Meyer-Fernandes JR (2010) Trypanosoma rangeli: differential expression of ecto-phosphatase activities in response to inorganic phosphate starvation. Exp Parasitol 124:386–393

    Article  PubMed  CAS  Google Scholar 

  18. Fernanado PH, Panagoda GJ, Samaranayake LP (1999) The relationship between the acid and alkaline phosphatase activity and the adherence of clinical isolates of Candida parapsilosis to human buccal epithelial cells. APMIS 107:1034–1042

    Article  PubMed  CAS  Google Scholar 

  19. Furuya T, Zhong L, Meyer-Fernandes JR, Lu HG, Moreno SN, Docampo R (1998) Ecto-protein tyrosine phosphatase activity in Trypanososma cruzi infective stages. Mol Biochem Parasitol 92:339–348

    Article  PubMed  CAS  Google Scholar 

  20. Guimarães LH, Terenzi HF, Jorge JA, Leone FA, Polizeli ML (2003) Extracellular alkaline phosphatase from the filamentous fungus Aspergillus caespitosus: purification and biochemical characterization. Folia Microbiol 48:627–632

    Article  Google Scholar 

  21. Hallsworth JE, Magan N (1996) Culture age, temperature, and pH affect the polyol and trehalose contents of fungal propagules. Appl Environ Microbiol 62:2435–2442

    PubMed  CAS  Google Scholar 

  22. Hernandez CEM, Guerrero IEP, Hernandez GAG, Solis ES, Guzman JCT (2010) Catalase overexpression reduces the germination time and increases the pathogenicity of the fungus Metarhizium anisopliae. Appl Microbiol Biotechnol 87:1033–1044

    Article  Google Scholar 

  23. Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser MJ, Ramachandran C (1997) Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 272:843–851

    Article  PubMed  CAS  Google Scholar 

  24. Kiffer-Moreira T, de Sá Pinheiro AA, Alviano WS, Barbosa FM, Souto-Padrón T, Nimrichter L, Rodrigues ML, Alviano CS, Meyer-Fernandes JR (2007) An ectophosphatase activity in Candida parapsilosis influences the interaction of fungi with epithelial cells. FEMS Yeast Res 7:621–628

    Article  PubMed  CAS  Google Scholar 

  25. Kiffer-Moreira T, Pinheiro AA, Pinto MR, Esteves FF, Souto-Padrón T, Barreto-Bergter E, Meyer-Fernandes JR (2007) Mycelial forms of Pseudallescheria boydii present ectophosphatase activities. Arch Microbiol 188:159–166

    Article  PubMed  CAS  Google Scholar 

  26. Kneipp LF, Palmeira VF, Pinheiro AAS, Alviano CS, Rozental S, Travassos LR, Meyer-Fernandes JR (2003) Phosphatase activity on the cell wall of Fonsecaea pedrosoi. Med Mycol 41:469–477

    Article  PubMed  CAS  Google Scholar 

  27. Kneipp LF, Rodrigues ML, Holandino C, Esteves FF, Alviano CS, Travassos LR, Meyer-Fernandes JR (2004) Ectophosphatase activity in conidial forms of Fonsecaea pedrosoi is modulated by exogenous phosphate and mediates fungal adhesion to epithelial cells. Microbiology 150:3355–3362

    Article  PubMed  CAS  Google Scholar 

  28. Li Z, Wang Z, Peng G, Yin Y, Zhao H, Cao Y, Xia Y (2006) Purification and characterization of a novel thermostable extracellular protein tyrosine phosphatase from Metarhizium anisopliae strain CQMa102. Biosci Biotechnol Biochem 70:1961–1968

    Article  PubMed  CAS  Google Scholar 

  29. Manners JG (1966) Assessment of germination. In: Madelin MF (ed) The fungus spore. Butterworth & Co., London, pp 165–173

    Google Scholar 

  30. Martiny A, Vannier-Santos MA, Borges VM, Meyer-Fernandes JR, Assreuy J, Cunha e Silva NL, de Souza W (1996) Leishmania-induced tyrosine phosphorylation in the host macrophage and its implication to infection. Eur J Cell Biol 71:206–215

    PubMed  CAS  Google Scholar 

  31. Meyer-Fernandes JR, Vieyra A (1988) Pyrophosphate formation from acetyl phosphate and orthophosphate: evidence for heterogeneous catalysis. Arch Biochem Biophys 266:132–141

    Article  PubMed  CAS  Google Scholar 

  32. Meyer-Fernandes JR (2002) Ecto-ATPases in protozoa parasites: looking for a function. Parasitol Int 51:299–303

    Article  Google Scholar 

  33. Pinheiro AAS, Amazonas JN, Barros FS, De Menezes LF, Batista EJ, Silva EF, De Souza W, Meyer-Fernandes JR (2007) Entamoeba histolytica: an ectophosphatase activity regulated by oxidation-reduction reactions. Exp Parasitol 115:352–358

    Article  Google Scholar 

  34. Portela MB, Kneipp LF, Ribeiro de Souza IP, Holandino C, Alviano CS, Meyer-Fernandes JR, de Araújo Soares RM (2010) Ectophosphatase activity in Candida albicans influences fungal adhesion: study between HIV-positive and HIV-negative isolates. Oral Dis 16:431–437

    Article  PubMed  CAS  Google Scholar 

  35. Santi L, Silva WOB, Pinto AF, Schrank A, Vainstein MH (2009) Differential immunoproteomics enables identification of Metarhizium anisopliae proteins related to Rhipicephalus microplus infection. Res Microbiol 160:824–828

    Article  PubMed  CAS  Google Scholar 

  36. Santi L, Beys da Silva WO, Berger M, Guimarães JA, Schrank A, Vainstein MH (2010) Conidial surface proteins of Metarhizium anisopliae: source of activities related with toxic effects, host penetration and pathogenesis. Toxicon 55:874–880

    Article  PubMed  CAS  Google Scholar 

  37. Santi L, Silva WOB, Pinto AF, Schrank A, Vainstein MH (2010) Metarhizium anisopliae host–pathogen interaction: differential immunoproteomics reveals proteins involved in the interaction process of arthropods. Fungal Biol 114:312–319

    Article  PubMed  CAS  Google Scholar 

  38. Santi L, Silva LAD, Silva WOB, Correa APF, Rangel DEN, Carlini CR, Schrank A, Vainstein MH (2011) Virulence of the entomopathogenic fungus Metarhizium anisopliae using soybean oil formulation for control of the cotton stainer bug, Dysdercus peruvianus. World J Microbiol Biotechnol 27:2297–2303

    Article  Google Scholar 

  39. Schrank A, Vainstein MH (2010) Metarhizium anisopliae enzymes and toxins. Toxicon 56:1267–1274

    Article  PubMed  CAS  Google Scholar 

  40. Silva WOB, Santi L, Berger M, Pinto AFM, Guimaraes JA, Schrank A, Vainstein MH (2009) Characterization of a spore surface lipase from the biocontrol agent Metarhizium anisopliae. Proc Biochem 44:829–834

    Article  CAS  Google Scholar 

  41. St Leger RJ, Joshi L, Roberts D (1998) Ambient pH is a major determinant in the expression of cuticle-degrading enzymes and hydrophobin by Metarhizium anisopliae. Appl Environ Microbiol 64:709–713

    PubMed  CAS  Google Scholar 

  42. Xander P, Vigna AF, Feitosa LS, Pugliese L, Bailão AM, Soares CM, Mortara RA, Mariano M, Lopes JD (2007) A surface 75-kDa protein with acid phosphatase activity recognized by monoclonal antibodies that inhibit Paracoccidioides brasiliensis growth. Microbes Infect 9:1484–1492

    Article  PubMed  CAS  Google Scholar 

  43. Xia Y, Clarkson JM, Charnley AK (2001) Acid phosphatases of Metarhizium anisopliae during infection of the tobacco hornworm Manduca sexta. Arch Microbiol 176:427–434

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Fabiano Ferreira Esteves and Ms. Rosangela Rosa de Araújo for the excellent technical assistance. We also thank Dr. Celia Carlini who kindly provided the insects used in this work. This work was supported by grants from the following Brazilian agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter O. Beys-da-Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosentino-Gomes, D., Rocco-Machado, N., Santi, L. et al. Inhibition of Ecto-Phosphatase Activity in Conidia Reduces Adhesion and Virulence of Metarhizium anisopliae on the Host Insect Dysdercus peruvianus . Curr Microbiol 66, 467–474 (2013). https://doi.org/10.1007/s00284-012-0296-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0296-z

Keywords

Navigation