Skip to main content

Advertisement

Log in

Probing the Molecular Mechanisms for Pristinamycin Yield Enhancement in Streptomyces pristinaespiralis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The mechanisms for the enhancement of pristinamycin production in the high-yielding recombinants of Streptomyces pristinaespiralis obtained by genome shuffling were investigated by quantitative real-time PCR (Q-PCR) and amplified fragment length polymorphism (AFLP) techniques. Q-PCR analysis showed that snaB and snbA involved, respectively, in the biosynthesis of pristinamycins II and I component had more extended high expression in the recombinant than that in the ancestor during fermentation process, indicating their expression changes might be key factors during the biosynthesis of the antibiotic. In addition, the antecedent establishment of the high self-resistance to pristinamycin, because ptr resistance gene started high-level expression ahead of the onset of the antibiotic production in the recombinant, might also lead to the increase of the antibiotics yield. AFLP analysis of these recombinants revealed genome variation of two novel genes, the homologs of AfsR regulatory gene and transposase gene, indicating these two gene variations were probably responsible for yield improvement of pristinamycin. This study provided several potential molecular clues for pristinamycin yield enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bai L, Li L, Xu H, Minagawa K, Yu Y, Zhang Y, Zhou X, Floss HG, Mahmud T, Deng Z (2006) Functional analysis of the validamycin biosynthetic gene cluster and engineered production of validoxylamine A. Chem Biol 13:387–397

    Article  PubMed  CAS  Google Scholar 

  2. Baltz RH (1998) Genetic manipulation of antibiotic-producing Streptomyces. Trends Microbiol 6:76–83

    Article  PubMed  CAS  Google Scholar 

  3. Bamas-Jacques N, Lorenzon S, Lacroix P, De Swetschin C, Crouzet J (1999) Cluster organization of the genes of Streptomyces pristinaespiralis involved in pristinamycin biosynthesis and resistance elucidated by pulsed-field gel electrophoresis. J Appl Microbiol 87:939–948

    Article  PubMed  CAS  Google Scholar 

  4. bdel-Hamid ME, Phillips OA (2003) LC-MS/MS determination of synercid injections. J Pharm Biomed Anal 32:1167–1174

    Article  Google Scholar 

  5. Blanc V, Lagneaux D, Didier P, Gil P, Lacroix P, Crouzet J (1995) Cloning and analysis of structural genes from Streptomyces pristinaespiralis encoding enzymes involved in the conversion of pristinamycin IIB to pristinamycin IIA (PIIA): PIIA synthase and NADH:riboflavin 5′-phosphate oxidoreductase. J Bacteriol 177:5206–5214

    PubMed  CAS  Google Scholar 

  6. Blanc V, Salah-Bey K, Folcher M, Thompson CJ (1995) Molecular characterization and transcriptional analysis of a multidrug resistance gene cloned from the pristinamycin-producing organism, Streptomyces pristinaespiralis. Mol Microbiol 17:989–999

    Article  PubMed  CAS  Google Scholar 

  7. Chater KF (1990) The improving prospects for yield increase by genetic engineering in antibiotic-producing Streptomycetes. Biotechnology (N Y) 8:115–121

    Article  CAS  Google Scholar 

  8. Cocito C (1979) Antibiotics of the virginiamycin family, inhibitors which contain synergistic components. Microbiol Rev 43:145–192

    PubMed  CAS  Google Scholar 

  9. Cocito C, Chinali G (1985) Molecular mechanism of action of virginiamycin-like antibiotics (synergimycins) on protein synthesis in bacterial cell-free systems. J Antimicrob Chemother 16(Suppl A):35–52

    PubMed  CAS  Google Scholar 

  10. Crecy-Lagard V, Blanc V, Gil P, Naudin L, Lorenzon S, Famechon A, Bamas-Jacques N, Crouzet J, Thibaut D (1997) Pristinamycin I biosynthesis in Streptomyces pristinaespiralis: molecular characterization of the first two structural peptide synthetase genes. J Bacteriol 179:705–713

    PubMed  Google Scholar 

  11. Floriano B, Bibb M (1996) afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 21:385–396

    Article  PubMed  CAS  Google Scholar 

  12. Folcher M, Gaillard H, Nguyen LT, Nguyen KT, Lacroix P, Bamas-Jacques N, Rinkel M, Thompson CJ (2001) Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J Biol Chem 276:44297–44306

    Article  PubMed  CAS  Google Scholar 

  13. Hopwood DA (2007) How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them? Mol Microbiol 63:937–940

    Article  PubMed  CAS  Google Scholar 

  14. Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic Manipulation of Streptomyces: A Laboratory Manual. The John Innes Foundation, Norwich

    Google Scholar 

  15. Jia B, Jin ZH, Lei YL, Mei LH, Li NH (2006) Improved production of pristinamycin coupled with an adsorbent resin in fermentation by Streptomyces pristinaespiralis. Biotechnol Lett 28:1811–1815

    Article  PubMed  CAS  Google Scholar 

  16. Jin Q, Jin Z, Xu B, Wang Q, Lei Y, Yao S, Cen P (2008) Genomic variability among high pristinamycin-producing recombinants of Streptomyces pristinaespiralis revealed by amplified fragment length polymorphism. Biotechnol Lett 30:1423–1429

    Article  PubMed  CAS  Google Scholar 

  17. Jin Q, Yin H, Hong X, Jin Z (2012) Isolation and functional analysis of spy1 responsible for pristinamycin yield in Streptomyces pristinaespiralis. J Microbiol Biotechnol 22:793–799

    Article  PubMed  CAS  Google Scholar 

  18. Jin Z, Jin X, Jin Q (2010) Conjugal transferring of resistance gene ptr for improvement of pristinamycin-producing Streptomyces pristinaespiralis. Appl Biochem Biotechnol 160:1853–1864

    Article  PubMed  CAS  Google Scholar 

  19. Jin Z, Lei Y, Lin J, Cen P (2005) Improvement of pristinamycin-producing Streptomyces pristinaespiralis by rational screening. World J Microbiol Biotechnol 22:129–134

    Article  Google Scholar 

  20. Paradkar A, Trefzer A, Chakraburtty R, Stassi D (2003) Streptomyces genetics: a genomic perspective. Crit Rev Biotechnol 23:1–27

    Article  PubMed  CAS  Google Scholar 

  21. Sezonov G, Blanc V, Bamas-Jacques N, Friedmann A, Pernodet JL, Guerineau M (1997) Complete conversion of antibiotic precursor to pristinamycin IIA by overexpression of Streptomyces pristinaespiralis biosynthetic genes. Nat Biotechnol 15:349–353

    Article  PubMed  CAS  Google Scholar 

  22. Weaden J, Dyson P (1998) Transposon mutagenesis with IS6100 in the avermectin-producer Streptomyces avermitilis. Microbiology 144(Pt 7):1963–1970

    Article  PubMed  CAS  Google Scholar 

  23. Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WP, del Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by National Natural Science Foundation of China (No. 20976161), Natural Science Foundation of Zhejiang Province, China (No. Y4100123), Natural Science Foundation of Ningbo City, China (No. 2010A610023), and the Scientific Research Launching Foundation for Introduced Talents of Ningbo Institute of Technology, Zhejiang University (No. 1141757G905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Q., Jin, Z., Zhang, L. et al. Probing the Molecular Mechanisms for Pristinamycin Yield Enhancement in Streptomyces pristinaespiralis . Curr Microbiol 65, 792–798 (2012). https://doi.org/10.1007/s00284-012-0233-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0233-1

Keywords

Navigation