Skip to main content
Log in

Flavone Reduces the Production of Virulence Factors, Staphyloxanthin and α-Hemolysin, in Staphylococcus aureus

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Staphylococcus aureus is a leading cause of nosocomial infections due to its resistance to diverse antibiotics. This bacterium produces a large number of extracellular virulence factors that are closely associated with specific diseases. In this study, diverse plant flavonoids were investigated to identify a novel anti-virulence compound against two S. aureus strains. Flavone, a backbone compound of flavonoids, at subinhibitory concentration (50 μg/mL), markedly reduced the production of staphyloxanthin and α-hemolysin. This staphyloxanthin reduction rendered the S. aureus cells 100 times more vulnerable to hydrogen peroxide in the presence of flavone. In addition, flavone significantly decreased the hemolysis of human red blood by S. aureus, and the transcriptional level of α-hemolysin gene hla and a global regulator gene sae in S. aureus cells. This finding supported the usefulness of flavone as a potential antivirulence agent against antibiotic-resistant S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boles BR, Horswill AR (2011) Staphylococcal biofilm disassembly. Trends Microbiol 19:449–455

    Article  PubMed  CAS  Google Scholar 

  2. Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ (2008) The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6:17–27

    Article  PubMed  CAS  Google Scholar 

  3. Clauditz A, Resch A, Wieland KP, Peschel A, Götz F (2006) Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect Immun 74:4950–4953

    Article  PubMed  CAS  Google Scholar 

  4. Cushnie TP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    Article  PubMed  CAS  Google Scholar 

  5. Dürig A, Kouskoumvekaki I, Vejborg RM, Klemm P (2010) Chemoinformatics-assisted development of new anti-biofilm compounds. Appl Microbiol Biotechnol 87:309–317

    Article  PubMed  Google Scholar 

  6. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  PubMed  CAS  Google Scholar 

  7. Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Hoiby N, Kjelleberg S, Givskov M (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102

    PubMed  CAS  Google Scholar 

  8. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465:346–349

    Article  PubMed  CAS  Google Scholar 

  9. Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) D-amino acids trigger biofilm disassembly. Science 328:627–629

    Article  PubMed  CAS  Google Scholar 

  10. Larzabal M, Mercado EC, Vilte DA, Salazar-Gonzalez H, Cataldi A, Navarro-Garcia F (2010) Designed coiled-coil peptides inhibit the type three secretion system of enteropathogenic Escherichia coli. PLoS One 5:e9046

    Article  PubMed  Google Scholar 

  11. Lee JH, Regmi SC, Kim JA, Cho MH, Yun H, Lee CS, Lee J (2011) Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infect Immun 79:4819–4827

    Article  PubMed  CAS  Google Scholar 

  12. Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129

    Article  PubMed  CAS  Google Scholar 

  13. Liu CI, Liu GY, Song Y, Yin F, Hensler ME, Jeng WY, Nizet V, Wang AH, Oldfield E (2008) A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 319:1391–1394

    Article  PubMed  CAS  Google Scholar 

  14. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532

    Article  PubMed  CAS  Google Scholar 

  15. Morikawa K, Maruyama A, Inose Y, Higashide M, Hayashi H, Ohta T (2001) Overexpression of sigma factor, σB, urges Staphylococcus aureus to thicken the cell wall and to resist β-lactams. Biochem Biophys Res Commun 288:385–389

    Article  PubMed  CAS  Google Scholar 

  16. Ohlsen K, Koller KP, Hacker J (1997) Analysis of expression of the alpha-toxin gene (hla) of Staphylococcus aureus by using a chromosomally encoded hla:lacZ gene fusion. Infect Immun 65:3606–3614

    PubMed  CAS  Google Scholar 

  17. Pantrangi M, Singh VK, Wolz C, Shukla SK (2010) Staphylococcal superantigen-like genes, ssl5 and ssl8, are positively regulated by Sae and negatively by Agr in the Newman strain. FEMS Microbiol Lett 308:175–184

    PubMed  CAS  Google Scholar 

  18. Park J, Jagasia R, Kaufmann GF, Mathison JC, Ruiz DI, Moss JA, Meijler MM, Ulevitch RJ, Janda KD (2007) Infection control by antibody disruption of bacterial quorum sensing signaling. Chem Biol 14:1119–1127

    Article  PubMed  CAS  Google Scholar 

  19. Qiu J, Li H, Meng H, Hu C, Li J, Luo M, Dong J, Wang X, Wang J, Deng Y, Deng X (2011) Impact of luteolin on the production of alpha-toxin by Staphylococcus aureus. Lett Appl Microbiol 53:238–243

    Article  PubMed  CAS  Google Scholar 

  20. Qiu J, Wang D, Xiang H, Feng H, Jiang Y, Xia L, Dong J, Lu J, Yu L, Deng X (2010) Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates. PLoS One 5:e9736

    Article  PubMed  Google Scholar 

  21. Skibola CF, Smith MT (2000) Potential health impacts of excessive flavonoid intake. Free Radic Biol Med 29:375–383

    Article  PubMed  CAS  Google Scholar 

  22. Stenz L, Francois P, Fischer A, Huyghe A, Tangomo M, Hernandez D, Cassat J, Linder P, Schrenzel J (2008) Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus. FEMS Microbiol Lett 287:149–155

    Article  PubMed  CAS  Google Scholar 

  23. Wang J, Qiu J, Dong J, Li H, Luo M, Dai X, Zhang Y, Leng B, Niu X, Zhao S, Deng X (2011) Chrysin protects mice from Staphylococcus aureus pneumonia. J Appl Microbiol 111:1551–1558

    Article  PubMed  CAS  Google Scholar 

  24. Wyatt MA, Wang W, Roux CM, Beasley FC, Heinrichs DE, Dunman PM, Magarvey NA (2010) Staphylococcus aureus nonribosomal peptide secondary metabolites regulate virulencev. Science 329:294–296

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Yeungnam University Research Grant and Bio-industry Technology Development Program, Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintae Lee.

Additional information

Jin-Hyung Lee and Joo-Hyeon Park contributed equally to this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JH., Park, JH., Cho, M.H. et al. Flavone Reduces the Production of Virulence Factors, Staphyloxanthin and α-Hemolysin, in Staphylococcus aureus . Curr Microbiol 65, 726–732 (2012). https://doi.org/10.1007/s00284-012-0229-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0229-x

Keywords

Navigation