Skip to main content
Log in

The Positive Effect of Exogenous Hemin on a Resistance of Strict Anaerobic Archaeon Methanobrevibacter arboriphilus to Oxidative Stresses

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Methanogenic archaeon Methanobrevibacter arboriphilus (strains AZ and DH1), which is a strict anaerobic microorganism not able to synthesize heme, possessed a very high catalase activity in the presence of 20–50 μM hemin in a growth medium. We investigated the effect of various oxidative stresses (hydrogen peroxide and oxygenation) on M. arboriphilus cells grown on the standard nutrient medium supplemented with 0.1 % yeast extract, and on the same medium supplemented with hemin. It was demonstrated that 30 μM hemin had a very significant positive effect on the resistance of M. arboriphilus strains to H2O2 and O2 stresses because of 30- to 40-fold increase of heme catalase activity. Thus, hydrogen peroxide (0.6–1.2 mM) or oxygen (3–5 %) had a strong negative impact on low-catalase cultures grown in the hemin-free standard medium, whereas the presence of 30 μM hemin in the medium results in a high yield of biomass even under conditions of four times stronger H2O2 and two times stronger O2 stresses. The intracellular catalase activity reached a high level in 30–60 min after hemin was added to the nutrient medium, but the activity already increased about 5–7-fold in 6 min after hemin addition. Our experimental data suggest that exogenous hemin provides an effective antioxidative defense in representatives of the genus Methanobrevibacter, specially playing an important role in the puromycin-insensitive formation of the active heme-containing catalase from presynthesized apoenzyme and heme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406

    Article  PubMed  CAS  Google Scholar 

  2. Brioukhanov AL, Netrusov AI (2007) Aerotolerance of strictly anaerobic microorganisms and factors of defense against oxidative stress: a review. Appl Biochem Microbiol 43:567–582

    Article  CAS  Google Scholar 

  3. Boone DR, Whitman WB, Rouvière P (1993) Diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 35–80

    Chapter  Google Scholar 

  4. Deppenmeier U, Muller V, Gottschalk G (1996) Pathways of energy conservation in methanogenic archaea. Arch Microbiol 165:149–163

    Article  CAS  Google Scholar 

  5. Jussofie A, Gottschalk G (1986) Further studies on the distribution of cytochromes in methanogenic bacteria. FEMS Microbiol Lett 37:15–18

    Article  CAS  Google Scholar 

  6. Shima S, Netrusov A, Sordel M, Wicke M, Hartmann GC, Thauer RK (1999) Purification, characterization, and primary structure of a monofunctional catalase from Methanosarcina barkeri. Arch Microbiol 171:317–323

    Article  PubMed  CAS  Google Scholar 

  7. Thauer RK, Bonacker LG (1994) Biosynthesis of coenzyme F 430, a nickel porphinoid involved in methanogenesis. Ciba Found Symp 180:210–227

    PubMed  CAS  Google Scholar 

  8. Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631

    PubMed  CAS  Google Scholar 

  9. Asakawa S, Morii H, Akagawa-Matsushita M, Koga Y, Hayano K (1993) Characterization of Methanobrevibacter arboriphilus SA isolated from a paddy field soil and DNA–DNA hybridization among M. arboriphilus strains. Int J Syst Bacteriol 43:683–686

    Article  Google Scholar 

  10. Shima S, Sordel-Klippert M, Brioukhanov A, Netrusov A, Linder D, Thauer RK (2001) Characterization of a heme-dependent catalase from Methanobrevibacter arboriphilus. Appl Environ Microbiol 67:3041–3045

    Article  PubMed  CAS  Google Scholar 

  11. Zámocký M, Gasselhuber B, Furtmüller PG, Obinger C (2012) Molecular evolution of hydrogen peroxide degrading enzymes. Arch Biochem Biophys. doi:10.1016/j.abb.2012.01.017

  12. Kiener A, Leisinger T (1983) Oxygen sensitivity of methanogenic bacteria. Syst Appl Microbiol 4:305–312

    Article  Google Scholar 

  13. Seedorf H, Dreisbach A, Hedderich R, Shima S, Thauer RK (2004) F 420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F 420-dependent enzyme involved in O2 detoxification. Arch Microbiol 182:126–137

    Article  PubMed  CAS  Google Scholar 

  14. Liu CT, Miyaki T, Aono T, Oyaizu H (2008) Evaluation of methanogenic strains and their ability to endure aeration and water stress. Curr Microbiol 56:214–218

    Article  PubMed  CAS  Google Scholar 

  15. Brioukhanov AL, Nesatyy VJ, Netrusov AI (2006) Purification and characterization of Fe-containing superoxide dismutase from Methanobrevibacter arboriphilus strain AZ. Biochemistry (Mosc.) 71:441–447

    Article  CAS  Google Scholar 

  16. Brioukhanov AL, Netrusov AI (2004) Catalase and superoxide dismutase: distribution, properties, and physiological role in cells of strict anaerobes. Biochemistry (Mosc.) 69:949–962

    Article  CAS  Google Scholar 

  17. Gregory EM, Fanning DD (1983) Effect of heme on Bacteroides distasonis catalase and aerotolerance. J Bacteriol 156:1012–1018

    PubMed  CAS  Google Scholar 

  18. Wilkins TD, Wagner DL, Veltri BJ, Gregory EM (1978) Factors affecting production of catalase by Bacteroides. J Clin Microbiol 8:553–557

    PubMed  CAS  Google Scholar 

  19. Rocha ER, Smith CJ (1997) Regulation of Bacteroides fragilis katB mRNA by oxidative stress and carbon limitation. J Bacteriol 179:7033–7039

    PubMed  CAS  Google Scholar 

  20. Gregory EM, Natalie DL (1981) Induction of catalase in the anaerobe Bacteroides distasonis by heme. Fed Proc 40:1864

    Google Scholar 

  21. Bramanti TE, Holt SC (1991) Roles of porphyrins and host iron transport proteins in regulation of growth of Porphyromonas gingivalis W50. J Bacteriol 173:7330–7339

    PubMed  CAS  Google Scholar 

  22. Brioukhanov AL, Thauer RK, Netrusov AI (2002) Catalase and superoxide dismutase in the cells of strictly anaerobic microorganisms. Microbiology 71:281–285

    Article  CAS  Google Scholar 

  23. Lemos RS, Gomes CM, Santana M, LeGall J, Xavier AV, Teixeira M (2001) The “strict anaerobe” Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain. FEBS Lett 496:40–43

    Article  PubMed  CAS  Google Scholar 

  24. Das A, Silaghi-Dumitrescu R, Ljungdahl LG, Kurtz DM (2005) Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica. J Bacteriol 187:2020–2029

    Article  PubMed  CAS  Google Scholar 

  25. Heidelberg J, Seshadri R, Haveman S et al (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22:554–559

    Article  PubMed  CAS  Google Scholar 

  26. Lobo S, Almeida C, Carita J, Teixeira M, Saraiva L (2008) The haem-copper oxygen reductase of Desulfovibrio vulgaris contains a dihaem cytochrome c in subunit II. Biochim Biophys Acta 1777:1528–1534

    Article  PubMed  CAS  Google Scholar 

  27. Bruggemann H, Bauer R, Raffestin S, Gottschalk G (2004) Characterization of a heme oxygenase of Clostridium tetani and its possible role in oxygen tolerance. Arch Microbiol 182:259–263

    Article  PubMed  Google Scholar 

  28. Nelson DP, Kiesow LA (1972) Enthalpy of decomposition of hydrogen peroxide by catalase at 25 °C (with molar extinction coefficients of H2O2 solutions in the UV). Anal Biochem 49:474–478

    Article  PubMed  CAS  Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  30. Balla G, Jacob HS, Eaton JW, Belcher JD, Vercellotti GM (1991) Hemin: a possible physiological mediator of low density lipoprotein oxidation and endothelial injury. Arterioscler Thromb 11:1700–1711

    Article  PubMed  CAS  Google Scholar 

  31. Bus JS, Gibson JE (1984) Paraquat: model for oxidant-initiated toxicity. Environ Health Perspect 55:37–46

    Article  PubMed  CAS  Google Scholar 

  32. Hertel C, Schmidt G, Fischer M, Oellers K, Hammes WP (1998) Oxygen-dependent regulation of the expression of the catalase gene katA of Lactobacillus sakei LTH677. Appl Environ Microbiol 64:1359–1365

    PubMed  CAS  Google Scholar 

  33. Loeb MR (1995) Ferrochelatase activity and protoporphyrin IX utilization in Haemophilus influenzae. J Bacteriol 177:3613–3615

    PubMed  CAS  Google Scholar 

  34. Rocha ER, Smith CJ (1995) Biochemical and genetic analyses of a catalase from the anaerobic bacterium Bacteroides fragilis. J Bacteriol 177:3111–3119

    PubMed  CAS  Google Scholar 

  35. Brune A, Emerson D, Breznak JA (1995) The termite microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687

    PubMed  CAS  Google Scholar 

  36. Ward DE, Donnelly CJ, Mullendore ME, van der Oost J, de Vos WM, Crane EJ (2001) The NADH oxidase from Pyrococcus furiosus. Implications for the protection of anaerobic hyperthermophiles against oxidative stress. Eur J Biochem 268:5816–5823

    Article  PubMed  CAS  Google Scholar 

  37. Strand KR, Sun C, Li T, Jenney FE, Schut GJ, Adams MW (2010) Oxidative stress protection and the repair response to hydrogen peroxide in the hyperthermophilic archaeon Pyrococcus furiosus and in related species. Arch Microbiol 192:447–459

    Article  PubMed  CAS  Google Scholar 

  38. Kawakami R, Sakuraba H, Kamohara S, Goda S, Kawarabayasi Y, Ohshima T (2004) Oxidative stress response in an anaerobic hyperthermophilic archaeon: presence of a functional peroxiredoxin in Pyrococcus horikoshii. J Biochem 136:541–547

    Article  PubMed  CAS  Google Scholar 

  39. Zehnder AJB, Wuhrmann K (1977) Physiology of a Methanobacterium strain AZ. Arch Microbiol 111:199–205

    Article  CAS  Google Scholar 

  40. Zeikus JG, Henning DL (1975) Methanobacterium arboriphilicum sp. nov. An obligate anaerobe isolated from wetwood of living trees. Antonie Leeuwenhoek 41:543–552

    Article  PubMed  CAS  Google Scholar 

  41. Brumm PJ, Fried J, Friedmann HC (1983) Bactobilin: blue bile pigment isolated from Clostridium tetanomorphum. Proc Natl Acad Sci USA 80:3943–3947

    Article  PubMed  CAS  Google Scholar 

  42. Leadbetter JR, Crosby LD, Breznak JA (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292

    Article  PubMed  CAS  Google Scholar 

  43. Bramanti TE, Holt SC (1993) Hemin uptake in Porphyromonas gingivalis: Omp26 is a hemin-binding surface protein. J Bacteriol 175:7413–7420

    PubMed  CAS  Google Scholar 

  44. Genco CA (1995) Regulation of hemin and iron transport in Porphyromonas gingivalis. Adv Dent Res 9:41–47

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei L. Brioukhanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brioukhanov, A.L., Netrusov, A.I. The Positive Effect of Exogenous Hemin on a Resistance of Strict Anaerobic Archaeon Methanobrevibacter arboriphilus to Oxidative Stresses. Curr Microbiol 65, 375–383 (2012). https://doi.org/10.1007/s00284-012-0168-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0168-6

Keywords