Skip to main content

Advertisement

Log in

Effect of Volumetric Water Content and Clover (Trifolium incarnatum) on the Survival of Escherichia coli O157:H7 in a Soil Matrix

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Studies aimed at understanding Escherichia coli O157:H7 soil survival dynamics are paramount due to their inevitable introduction into the organic vegetable production systems via animal manure-based fertilizer. Therefore, a greenhouse study was conducted to determine the survival of E. coli O157:H7 in highly controlled soil matrices subjected to two variable environmental stressors: (1) soil volumetric water content (25 or 45 % VWC), and (2) the growth of clover (planted or unplanted). During the 7-week study, molecular-based qPCR analyses revealed that E. coli O157:H7 survival was significantly lower in soils maintained at either near water-holding capacity (45 % VWC) or under clover growth. The significant reduction under clover growth was only observed when E. coli populations were determined relative to all bacteria, indicating the need to further study the competition between E. coli O157:H7 and the total bacterial community in organic soils. Given the significant effect of clover on E. coli O157:H7 survival under different moisture conditions in this greenhouse-based study, this work highlights the antimicrobial potential of clover exudates in arable soils, and future work should concentrate on their specific mechanisms of inhibition; ultimately leading to the development of crop rotations/production systems to improve pre-harvest food safety and security in minimally processed, ready-to-eat and organic production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

VWC:

Volumetric water content

qPCR:

Quantitative real-time polymerase chain reaction

EC/TB:

E. coli O157:H7/total bacteria

References

  1. Avery LA, Hill P, Killham K, Jones DL (2004) Escherichia coli O157 survival following the surface and sub-surface application of human pathogen contaminated organic waste to soil. Soil Biol Biochem 36:2101–2103

    Article  CAS  Google Scholar 

  2. Badawy OFH, Shafii SSA, Tharwat EE, Kamal AM (2004) Antibacterial activity of bee honey and its therapeutic usefulness against Escherichia coli O157:H7 and Salmonella typhimurium infection. OIE Revue Scientifique et Technique 23:1011–1022

    CAS  Google Scholar 

  3. Berry ED, Miller DN (2005) Cattle feedlot soil moisture and manure content: II. Impact on Escherichia coli 157. J Environ Qual 34:656–663

    Article  PubMed  CAS  Google Scholar 

  4. Blum SAE, Lorenz MG, Wackernagel W (1997) Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils. Syst Appl Microbiol 20:513–521

    Article  CAS  Google Scholar 

  5. Bryskier A (2005) Antimicrobial agents: chemical, physical, and biological consequences. ASM, Washington

    Google Scholar 

  6. Bunt AC (1988) Media and mixes for container-grown plants, 2nd edn. Unwin Hyman, London

    Book  Google Scholar 

  7. Byappanahalli M, Fujioka R (2004) Indigenous soil bacteria and low moisture may limit but allow faecal bacteria to multiply and become a minor population in tropical soils. Water Sci Technol 50:27–32

    PubMed  CAS  Google Scholar 

  8. Casper BB, Schnek HJ, Jackson RB (2003) Defining a plant’s belowground zone of influence. Ecology 84:2313–2321

    Article  Google Scholar 

  9. CDC (2006) Ongoing multistate outbreak of Escherichia coli serotype O157:H7 infections associated with consumption of fresh spinach—United States. Morb Mortal Wkly Rep 55:1045–1046

    Google Scholar 

  10. CDC (2008) Enterohemorrhagic Escherichia coli general information. http://www.cdc.gov/ncidod/dbmd/diseaseinfo/enterohemecoli_t.htm. Accessed 9 Sept 2011

  11. CFERT (2008) Investigation of the Taco John’s Eschericha coli O157:H7 outbreak associated with iceberg lettuce. California Department of Health Services/US Food and Drug Administration, Sacramento

    Google Scholar 

  12. Chaiyanan S, Huq A, Maugel T, Colwell RR (2001) Viability of the nonculturable Vibrio cholerae O1 and O139. Syst Appl Microbiol 24:331–341

    Article  PubMed  CAS  Google Scholar 

  13. Delong DM, Yang YC (1988) UNIVARIATE procedure. In: SAS Institute (ed) SAS procedures guide, release 6.03. SAS Institute, Cary

  14. Dhiaf A, Ban Abdallah F, Bakhrouf A (2010) Resuscitation of 20-year starved Salmonella in seawater and soil. Ann Microbiol 60:157–160

    Article  Google Scholar 

  15. Dimitri C, Greene C (2000) Recent growth patterns in the U.S. organic food market. USDA/ERS, Washington, pp 1–15

  16. Doyle MP, Zhao T, Meng J, Zhao S (1997) Escherichia coli O157:H7. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food microbiology: fundamentals and frontiers. ASM Press, Washington, pp 171–191

    Google Scholar 

  17. Elder RO, Keen JE, Siragusa GR, Barkocy-Gallagher GA, Koohmaraie M, Laegreid WW (2000) Correlation of enterohemorrhagic Escherichia coli O157:H7 prevalence in feces, hides, and carcasses of beef cattle during processing. Proceedings of the National Academy of Sciences, USA 97:2999–3003

    Article  CAS  Google Scholar 

  18. Everis L (2004) Risks of pathogens in ready-to-eat fruits, vegetables, and salads through the production process. Review no. 44. Campden and Chorleywood Food Research Association Group, Chipping Campden

  19. Fenlon DR, Ogden ID, Vinten A, Svoboda I (2000) The fate of Escherichia coli and Escherichia coli O157:H7 in cattle slurry after application to land. J Appl Microbiol 88(Suppl):149S–156S

    Google Scholar 

  20. Flythe M, Kagan I (2010) Antimicrobial effect of red clover (Trifolium pratense) phenolic extract on the ruminal hyper ammonia-producing bacterium, Clostridium sticklandii. Curr Microbiol 61:125–131

    Article  PubMed  CAS  Google Scholar 

  21. Frahm E, Obst U (2003) Application of the fluorogenic probe technique (TaqMan PCR) to the detecion of Enterococcus spp. and Escherichia coli in water samples. J Microbiol Methods 52:123–131

    Article  PubMed  CAS  Google Scholar 

  22. Gagliardi JV, Karns JS (2002) Persistence of Escherichia coli O157:H7 in soil and on plant roots. Environ Microbiol 4:89–96

    Article  PubMed  Google Scholar 

  23. Gerba CP, Bitton G (1984) Microbial pollutants: their survival and transport pattern to groundwater. In: Bitton G, Gerba CP (eds) Groundwater pollution microbiology. Wiley, New York, pp 39–54

    Google Scholar 

  24. Guan TY, Holley RA (2003) Pathogen survival in swine manure environments and transmission of human enteric illness—a review. J Environ Qual 32:383–392

    Article  PubMed  CAS  Google Scholar 

  25. Gupte AR, De Rezende CL, Joseph SW (2003) Induction and resuscitation of viable but nonculturable Salmonella enterica serovar Typhimurium DT104. Appl Environ Microbiol 69:6669–6675

    Article  PubMed  CAS  Google Scholar 

  26. Habteselassie M, Bischoff M, Blume E, Applegate B, Reuhs B, Brouder S, Turco RF (2008) Environmental controls on the fate of Escherichia coli in soil. Water Air Soil Pollut 190:143–155

    Article  CAS  Google Scholar 

  27. Halawani EM, Shohayeb MM (2011) Shaoka and Sidr honeys surpass in their antibacterial activity local and imported honeys available in Saudi markets against pathogenic and food spoilage bacteria. Aust J Basic Appl Sci 5:187–191

    CAS  Google Scholar 

  28. Harms G, Layton AC, Dionisi HM, Gregory IR, Garrett VM, Hawkins SA, Robinson KG, Sayler GS (2003) Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ Sci Technol 37:343–351

    Article  PubMed  CAS  Google Scholar 

  29. Heaton JC, Jones K (2007) Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review. J Appl Microbiol 104:613–626

    Article  PubMed  Google Scholar 

  30. Hegazi AG (2011) Antimicrobial activity of different Egyptian honeys as a comparison of Saudi Arabia honey. Res J Microbiol 6:488–495

    Article  Google Scholar 

  31. Herdina K, Neate S, Jabaji-Hare S, Ophel-Keller K (2004) Persistence of DNA of Gaeumannomuces graminis var. tritici in soil as measured by a DNA-based array. FEMS Microbiol Ecol 47:143–152

    Article  PubMed  CAS  Google Scholar 

  32. Hutchinson ML, Walters LD, Moore A, Crookes KM, Avery SM (2004) Effect of length of time before incorporation on survival of pathogenic bacteria present in livestock wastes applied to agricultural soil. Appl Environ Microbiol 73:5111–5118

    Article  Google Scholar 

  33. Ibekwe AM, Watt PM, Shouse PJ, Greieve CM (2004) Fate of Escherichia coli O157:H7 in irrigation waters on soils and plants as validated by culture method and real-time PCR. Can J Microbiol 50:1007–1014

    Article  PubMed  CAS  Google Scholar 

  34. Islam M, Doyle MP, Phatak SC, Millner P, Jiang X (2004) Persistence of enterohemorrhagic Escherichia coli O157:H7 in soil and on leaf lettuce and parsley grown in fields treated with contaminated manure composts or irrigation water. J Food Prot 67:1365–1370

    PubMed  Google Scholar 

  35. Islam M, Doyle MP, Phatak SC, Millner P, Jiang X (2005) Survival of Escherichia coli O157:H7 in soil and on carrots and onions grown in fields treated with contaminated manure composts or irrigation water. Food Microbiol 22:63–70

    Article  Google Scholar 

  36. Jiang X, Morgan J, Doyle MP (2002) Fate of Escherichia coli O157:H7 in manure-amended soil. Appl Environ Microbiol 68:2605–2609

    Article  PubMed  CAS  Google Scholar 

  37. Jones DL (1999) Potential health risks associated with the persistence of Escherichia coli O157 in agricultural environments. Soil Use Manag 15:76–83

    Article  Google Scholar 

  38. Klappenbach JA, Saxman PR, Cole JR, Schmidt TM (2001) rrndb: the ribosomal RNA operon copy number database. Nucl Acids Res 29:181–184

    Article  PubMed  CAS  Google Scholar 

  39. Klassen SP, Ritchie G, Frantz JM, Pinnock D, Bugbee B (2003) Real time imaging of ground cover: relationships with radiation capture, canopy photosynthesis, and relative growth rate. Special publications through the Crop Science Society of America. 63:3–14

    Google Scholar 

  40. Larkin RP, Honeycutt CW, Griffin TS, Olanya OM, Halloran JM, He Z (2011) Effects of different potato cropping system approaches and water management on soilborne diseases and soil microbial communities. Phytopathology 101:58–67

    Article  PubMed  Google Scholar 

  41. Lau MM, Ingham SC (2001) Survival of fecal indicator bacteria in bovine manure incorporated soil. Lett Appl Microbiol 33:131–136

    Article  PubMed  CAS  Google Scholar 

  42. Lavender JS, Kinzelman JL (2009) A cross comparison of QPCR to agar-based or defined substrate test methods for the determination of Escherichia coli and enterococci in municipal water quality monitoring programs. Water Res 43:4967–4979

    Article  PubMed  CAS  Google Scholar 

  43. Levy-Booth DJ, Campbell RG, Gulden RH, Hart MM, Powell JR, Klironomos JN, Pauls KP, Swanton CJ, Trevors JT, Dunfield KE (2007) Cycling of extracellular DNA in the soil environment. Soil Biol Biochem 39:2977–2991

    Article  CAS  Google Scholar 

  44. Morel C, Stermitz FR, Tegos G, Lewis K (2003) Isoflavones as potentiators of antibacterial activity. J Agric Food Chem 51:5677–5679

    Article  PubMed  CAS  Google Scholar 

  45. Mubiru DN, Coyne MS, Grove JH (2000) Mortality of Escherichia coli O157:H7 in two soils with different physical and chemical properties. J Environ Qual 29:1821–1825

    Article  CAS  Google Scholar 

  46. Nemali KS, van Iersel MW (2006) An automated system for controlling drought stress and irrigation in potted plants. Sci Hortic 110:292–297

    Article  Google Scholar 

  47. Nicholson FA, Groves SJ, Chambers BJ (2005) Pathogen survival during livestock manure storage and following land application. Bioresour Technol 96:135–143

    Article  PubMed  CAS  Google Scholar 

  48. Noble RT, Blackwood AD, Griffith JF, McGee CD, Weisberg SB (2010) Comparison of rapid quantitative pcr-based and conventional culture-based methods for enumeration of Enterococcus spp. and Escherichia coli in recreational waters. Appl Environ Microbiol 76:7437–7443

    Article  PubMed  CAS  Google Scholar 

  49. Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100

    PubMed  Google Scholar 

  50. Oliver JD (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Ecol 34:415–425

    CAS  Google Scholar 

  51. Patel JR, Millner P, Nou X, Sharma M (2010) Persistence of enteromaemorrhagic and nonpathogenic E. coli on spinach leaves and in rhizosphere soil. J Appl Microbiol 108:1789–1796

    Article  PubMed  CAS  Google Scholar 

  52. Pietramellara G, Ascher J, Borgogni F, Ceccherini MT, Guerri G, Nannipieri P (2009) Extracellular DNA in soil and sediment: fate and ecological relevance. Biol Fertil Soils 45:219–235

    Article  CAS  Google Scholar 

  53. Rippy J, Nelson P (2007) Cation exchange capacity and base saturation variation among Alberta, Canada moss peats. HortScience 42:349–352

    CAS  Google Scholar 

  54. Rogers SW, Donnelly M, Peed L, Kelty CA, Mondal S, Zhong Z, Shanks OC (2011) Decay of bacterial pathogens, fecal indicators, and real-time quantitative PCR genetic markers in manure-amended soils. Appl Environ Microbiol 77:4839–4848

    Article  PubMed  CAS  Google Scholar 

  55. Rothrock MJ Jr, Cook KL, Bolster CH (2009) Comparative quantification of Campylobacter jejuni from environmental samples using traditional and molecular biological techniques. Can J Microbiol 55:633–641

    Article  PubMed  CAS  Google Scholar 

  56. Saklaven MG, Grant LK, De Minnich K (1996) Antibacterial activity of honey against Clostridium difficile. J Investig Med 44:302a

    Google Scholar 

  57. Santamaria J, Toranzos GA (2003) Enteric pathogens and soil: a short review. Int Microbiol 6:5–9

    PubMed  Google Scholar 

  58. SAS Institute (2008) SAS Release 9.2, SAS Institute, Cary, NC

  59. Sinegani AAS, Maghsoudi J (2011) The effect of soil water potential on survival of fecal coliforms in soil treated with organic wastes under laboratory conditions. Afr J Microbiol Res 5:229–240

    Google Scholar 

  60. Sullivan ML, Hatfield RD (2006) Polyphenol oxidase and o-diphenols inhibit postharvest proteolysis in red clover and alfalfa. Crop Sci 46:662–670

    Article  CAS  Google Scholar 

  61. U.S.EPA (2003) Guidelines establishing test procedures for the analysis of pollutants; analytical methods for biological pollutants in ambient water. Final rule. Federal Register. United States Environmental Protection Agency (EPA), vol 68, pp. 43272–43283

  62. Wang G, Doyle MP (1998) Survival of enterohemorrhagic Escherichia coli O157:H7 in water. J Food Prot 61:662–667

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jim Hunt and Peggy Pinette for their assistance throughout the study, including the sampling and sample analyses. This research was part of USDA-ARS National Program 216: Agricultural System Competitiveness and Sustainability: ARS Project 1915-62660-001-00D “Enhancing Sustainability of Food Systems in the Northeast”.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Rothrock Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothrock, M.J., Frantz, J.M. & Burnett, S. Effect of Volumetric Water Content and Clover (Trifolium incarnatum) on the Survival of Escherichia coli O157:H7 in a Soil Matrix. Curr Microbiol 65, 272–283 (2012). https://doi.org/10.1007/s00284-012-0142-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0142-3

Keywords

Navigation