Skip to main content

Advertisement

Log in

Rapid and Sensitive Detection of Major Uropathogens in a Single-Pot Multiplex PCR Assay

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Urinary tract infection (UTI) is among the most common bacterial infections and poses a significant healthcare burden. Escherichia coli is the most common cause of UTI accounting for up to 70 % and a variable contribution from Proteus mirabilis, Pseudomonas aeruginosa and Klebsiella pneumoniae. To establish a complete diagnostic system, we have developed a single-tube multiplex PCR assay (mPCR) for the detection of the above-mentioned four major uropathogens. The sensitivity of the assay was found to be as low as 102 cfu/ml of cells. The mPCR evaluated on 280 clinical isolates detected 100 % of E. coli, P. aeruginosa, P. mirabilis and 95 % of K. pneumonia. The assay was performed on 50 urine samples and found to be specific and sensitive for clinical diagnosis. In addition, the mPCR was also validated on spiked urine samples using 40 clinical isolates to demonstrate its application under different strain used in this assay. In total, mPCR reported here is a rapid and simple screening tool that can compete with conventional biochemical-based screening assays that may require 2–3 days for detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Foxman B (2003) Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Dis Mon 49:53–70

    Article  PubMed  Google Scholar 

  2. Goya N, Tanabe K, Iguchi Y, Oshima T, Yagisawa T, Toma H, Agishi T, Ota K, Takahashi K (1997) Prevalence of urinary tract infection during outpatient follow-up after renal transplantation. Infection 25:101–105

    Article  PubMed  CAS  Google Scholar 

  3. Grude N, Tveten Y, Kristiansen BE (2001) Urinary tract infections in Norway: bacterial etiology and susceptibility. A retrospective study of clinical isolates. Clin Microbiol Infect 7:543–547

    PubMed  CAS  Google Scholar 

  4. Houdouin SBV, Kurkdjian PM, Messai FM, Bingen E (2006) Comparative prevalence of virulence factors in Escherichia coli causing urinary tract infection in male infants with and without bacteremia. J Clin Microbiol 44:1156–1158

    Article  PubMed  Google Scholar 

  5. Laupland KB, Ross T, Pitout JDD, Church DL, Gregson DB (2007) Community-onset urinary tract infections: a population-based assessment. Infection 35:150–153

    Article  PubMed  CAS  Google Scholar 

  6. Sabbiba NA, Mahenthiralingam E, Stickler DJ (2003) Molecular epidemiology of Proteus mirabilis infections of the catheterized urinary tract. J Clin Microbiol 41:4961–4965

    Article  Google Scholar 

  7. Shaw KN, Gorelick M, McGowan KL, Yakscoe NM, Schwartz JS (1998) Prevalence of urinary tract infection in febrile young children in the emergency department. Pediatrics 102:e16

    Article  PubMed  CAS  Google Scholar 

  8. Zhang L, Foxman B, Manning SD, Tallmam P, Marrs CF (2000) Molecular epidemiological approaches to urinary tract infection gene discovery in uropathogenic Escherichia coli. Infect Immun 68:2009–2015

    Article  PubMed  CAS  Google Scholar 

  9. Nys S, Van Merode T, Bartelds AL, Stobberingh EE (2006) Urinary tract infection in general practice patients: diagnostic tests versus bacteriological culture. J Antimicrob Chemother 57:955–958

    Article  PubMed  CAS  Google Scholar 

  10. Schmiemann G, Kniehl E, Gebhardt K, Matejczyk MM, Hummers-Pradier E (2010) The diagnosis of urinary tract infection: a systemic review. Dtsch Arztebl Int 107:361–367

    PubMed  Google Scholar 

  11. Whiting P, Westwood M, Bojke L, Palmer S, Richardson G, Cooper J et al (2006) Clinical effectiveness and cost-effectiveness of tests for the diagnosis and investigation of urinary tract infection in children: a systemic review and economic model. Health Technol Assess 10:1–154

    PubMed  CAS  Google Scholar 

  12. Wilson ML, Gaido L (2004) Laboratory diagnosis of urinary tract infection in adult patients. Clin Infect Dis 38:1150–1158

    Article  PubMed  Google Scholar 

  13. Lammers RL, Gibson S, Kovacs D, Sears W, Strachan G (2001) Comparison of test characteristics of urine dipstick and urinalysis at various test cutoff points. Ann Emerg Med 38:505–512

    Article  PubMed  CAS  Google Scholar 

  14. Nikfar R, Khotaee G, Ataee N, Shams S (2010) Usefulness of procalcitonin rapid test for the diagnosis of acute pyelonephritis in children in the emergence department. Pediatr Int 52:196–198

    Article  PubMed  CAS  Google Scholar 

  15. Williams GJ, Macaskill P, Chan SF, Turner RM, Hodson E, Craiq JC (2010) Absolute and relative accuracy of rapid urine tests for urinary tract infection in children: a meta-analysis. Lancet Infect Dis 10:240–250

    Article  PubMed  Google Scholar 

  16. Jolkkonen S, Paattiniemi EL, Karpanoja P, Sarkkinen H (2010) Screening of urine samples by flow cytometry reduces the need for culture. J Clin Microbiol 48:3117–3121

    Article  PubMed  Google Scholar 

  17. Kellogg JA, Manzella JP, Seiple JW, Fortna SJ, Cook JW, Levisky JS (1992) Efficacy of an enzyme-linked immunosorbent assay for detection of urinary tract immunoglobulins for diagnosis of urinary tract infection. J Clin Microbiol 30:1711–1715

    PubMed  CAS  Google Scholar 

  18. Palmqvist E, Aspevall O, Burman E, Nordin G, Svahn A (2008) Difficulties for primary health care staff in interpreting bacterial findings on a device for simplified urinary culture. Scand J Clin Lab Invest 68:312–316

    Article  PubMed  Google Scholar 

  19. Nissen MD, Sloots TP (2002) Rapid diagnosis in pediatric infectious diseases: the past, the present and the future. Pediatr Infect Dis J 21:605–612

    Article  PubMed  Google Scholar 

  20. Halbert ND, Reitzel RA, Martens RJ, Cohen ND (2005) Evaluation of a multiplex polymerase chain reaction assay for simultaneous detection of Rhodococcus equi and the vapA gene. Am J Vet Res 66:1380–1385

    Article  PubMed  CAS  Google Scholar 

  21. O’Halloran DM, Cafferkey MT (2005) Multiplex PCR for identification of seven Streptococcus pneumoniae serotypes targeted by a 7-valent conjugate vaccine. J Clin Microbiol 43:3487–3490

    Article  PubMed  Google Scholar 

  22. Persson S, Olsen KEP (2005) Multiplex PCR for identification of Campylobacter coli and Campylobacter jejuni from pure cultures and directly in stool samples. J Med Microbiol 54:1043–1047

    Article  PubMed  CAS  Google Scholar 

  23. Johnson JR, Stell AL (2000) Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis 181:261–272

    Article  PubMed  CAS  Google Scholar 

  24. Stankowska D, Kwinkowski M, Kaca W (2008) Quantification of Proteus mirabilis virulence factors and modulation by acylated homoserine lactones. J Microbiol Immunol Infect 41:243–253

    PubMed  CAS  Google Scholar 

  25. Ki JS, Roh HJ, Lee BY, Yoon JY, Jang GY (2007) Direct DNA isolation from solid biological sources without pretreatments with proteinase-K and/or homogenization through automated DNA extraction. J Biosci Bioeng 103:242–246

    Article  PubMed  CAS  Google Scholar 

  26. Queipo-Ortuno MI, De Dios Colmenero J, Macias M, Bravo MJ, Morata P (2008) Preparation of bacterial DNA template by boiling and effect of immunoglobulin G as an inhibitor in real-time PCR for serum samples from patients with brucellosis. Clin Vaccine Immunol 15:293–296

    Article  PubMed  CAS  Google Scholar 

  27. Akanji BO, Ajele OJ, Onasanya A, Oyelakin O (2011) Genetic fingerprinting of Pseudomonas aeruginosa involved in nosocomial infection as revealed by RAPD-PCR markers. Biotechnology 10:70–77

    Article  CAS  Google Scholar 

  28. Melican K, Sandoval RM, Kader A, Josefsson L, Tanner GA et al (2011) Uropathogenic Escherichia coli P and type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. PLoS Pathog 7:e1001298

    Article  PubMed  CAS  Google Scholar 

  29. Nagano N, Cordevant C, Nagano Y (2008) Upper and lower urinary tract infection caused by Klebsiella pneumoniae serotype K2 and CTX-M-15 b-lactamase-producing serotype K1: a case report and characterization of serum killing resistance. J Med Microbiol 57:121–124

    Article  PubMed  CAS  Google Scholar 

  30. Pearson MM, Yep A, Smith SN, Mobley HL (2011) Transcriptome of Proteus mirabilis in the murine urinary tract: virulence and nitrogen assimilation gene expression. Infect Immun 79:2619–2631

    Article  PubMed  CAS  Google Scholar 

  31. Poulou A, Spanakis N, Pournaras S, Pitiriga V, Ranellou K, Markou F, Tsakris A (2010) Recurrent healthcare-associated community-onset infections due to Klebsiella pneumoniae producing VIM-1 metallo-β-lactamase. J Antimicrob Chemother 65:2538–2542

    Article  PubMed  CAS  Google Scholar 

  32. Boddinghaus B, Wichelhaus TA, Brade V, Bittner T (2001) Removal of PCR inhibitors by silica membranes: evaluating the amplicor Mycobacterium tuberculosis kit. J Clin Microbiol 39:3750–3752

    Article  PubMed  CAS  Google Scholar 

  33. Shigemura K, Shirakawa T, Okada H, Tanaka K, Kamidono S et al (2005) Rapid detection and differentiation of Gram-negative and Gram-positive pathogenic bacteria in urine using TaqMan probe. Clin Exp Med 4:196–201

    Article  PubMed  CAS  Google Scholar 

  34. Hinata N, Shirakawa T, Okada H, Shigemura K, Kamidono S et al (2004) Quantitative detection of Escherichia coli from urine of patients with bacteriuria by real-time PCR. Mol Diagn 8:179–184

    Article  PubMed  Google Scholar 

  35. Lehmann LE, Hauser S, Malinka T, Klaschik S, Weber SU, Schewe JC, Stuber F, Book M (2011) Rapid qualitative urinary tract infection pathogen identification by Septifast® real-time PCR. PLoS One 6:e17146

    Article  PubMed  CAS  Google Scholar 

  36. Saeed HA, Yousif ZK, El-Hassan MM, Atti MEYA, Mansour MM (2009) A real-time polymerase chain reaction based assay for the detection of Escherichia coli in patients with urinary tract infection in the Sudan. Res J Microbiol 4:173–177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr Sumathi, Government General Hospital Chennai, for providing some of the samples used in this study.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Jaffar Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padmavathy, B., Vinoth Kumar, R., Patel, A. et al. Rapid and Sensitive Detection of Major Uropathogens in a Single-Pot Multiplex PCR Assay. Curr Microbiol 65, 44–53 (2012). https://doi.org/10.1007/s00284-012-0126-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0126-3

Keywords

Navigation