Skip to main content

Advertisement

Log in

Screening for the Interacting Partners of the Proteins MamK & MamJ by Two-Hybrid Genomic DNA Library of Magnetospirillum magneticum AMB-1

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Magnetotactic bacteria are a group of prokaryotes capable of sensing and navigating along the earth’s magnetic field. The linear alignment of magnetosomes, which acts as a compass needle for orientation, is dependent on the proteins MamJ (amb0964) & MamK (amb0965). We constructed Magnetospirillum magneticum AMB-1 two-hybrid DNA libraries by fusing the random genomic fragments of AMB-1 to the N-terminal domain of the α-subunit of RNA polymerase in vector pTRG and used as preys. The genes mamJ & mamK were cloned in frame with the λ repressor protein (λ cI) in vector pBT and used as baits for screening the binding partners. After preliminary screening, we further confirmed the candidate interactions between selected protein pairs. The results showed that there were relatively strong interactions between MamK versus Amb3498 (flagella motor switch protein fliM), versus Amb0854 MCPs (signal domain of methyl-accepting chemotaxis protein) and versus Amb3568 (GGDEF domain-containing protein), respectively. MamJ versus Amb1722 (hypothetical protein), MamJ versus MamK, and MamK versus Amb1807 (cation transport ATPase) exhibited low level of interaction. Although the TPR repeat protein MamA (amb0971) showed no interaction with either MamJ or MamK, the TPR repeat protein Amb0024 with more motif sequences exhibited relatively strong interaction with MamK. Among the identified proteins, all categorized as signal transduction-related displayed interaction only with MamK and without MamJ, suggesting that magnetotaxis via MamK in Magnetospirillum magneticum AMB-1 might be somehow concerned with the widely accepted chemotaxis mechanism in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379

    Article  PubMed  CAS  Google Scholar 

  2. Blakemore RP (1982) Magnetotactic bacteria. Annu Rev Microbiol 36:217–238

    Article  PubMed  CAS  Google Scholar 

  3. Jogler C, Schüler D (2009) Genomics, genetics, and cell biology of magnetosome formation. Annu Rev Microbiol 63:501–521

    Article  PubMed  CAS  Google Scholar 

  4. Komeili A (2007) Molecular mechanisms of magnetosome formation. Annu Rev Biochem 76:351–366

    Article  PubMed  CAS  Google Scholar 

  5. Schüler D (2008) Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev 32:654–672

    Article  PubMed  Google Scholar 

  6. Komeili A, Li Z, Newman DK et al (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–245

    Article  PubMed  CAS  Google Scholar 

  7. Scheffel A, Gruska M, Faivre D et al (2006) An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440:110–114

    Article  PubMed  CAS  Google Scholar 

  8. Katzmann E, Scheffel A, Gruska M et al (2010) Loss of the actin like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense. Mol Microbiol 77:208–224

    Article  PubMed  CAS  Google Scholar 

  9. Taoka A, Asada R, Wu LF et al (2007) Polymerization of the actin-like protein MamK, which is associated with magnetosomes. J Bacteriol 189:8737–8740

    Article  PubMed  CAS  Google Scholar 

  10. Graumann PL (2004) Cytoskeletal elements in bacteria. Curr Opin Microbiol 7:565–571

    Article  PubMed  CAS  Google Scholar 

  11. Pradel N, Santini CL, Bernadac A et al (2006) Biogenesis of actin-like bacterial cytoskeletal filaments destined for positioning prokaryotic magnetic organelles. Proc Natl Acad Sci USA 103:17485–17489

    Article  PubMed  CAS  Google Scholar 

  12. Frankel RB, Bazylinski DA (2006) How magnetotactic bacteria make magnetosomes queue up. Trends Microbiol 14:329–331

    Article  PubMed  CAS  Google Scholar 

  13. Scheffel A, Schüler D (2007) The acidic repetitive domain of the Magnetospirillum gryphiswaldense MamJ protein displays hypervariability but is not required for magnetosome chain assembly. J Bacteriol 189:6437–6446

    Article  PubMed  CAS  Google Scholar 

  14. Yang CD, Takeyama H, Tanaka T et al (2001) Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of luciferase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1. Enzyme Microb Technol 29:13–19

    Article  PubMed  CAS  Google Scholar 

  15. Zhao LZ, Wu D, Wu LF et al (2007) A simple and accurate method for quantification of magnetosomes in magnetotactic bacteria by common spectrophotometer. J Biochem Biophys Methods 70:377–383

    Article  PubMed  CAS  Google Scholar 

  16. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  17. Romling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57:629–639

    Article  PubMed  Google Scholar 

  18. Simm R, Morr M, Kader A et al (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134

    Article  PubMed  CAS  Google Scholar 

  19. Philippe N, Wu LF (2010) An MCP-like protein interacts with the MamK cytoskeleton and is involved in magnetotaxis in Magnetospirillum magneticum AMB-1. J Mol Biol 400:309–322

    Article  PubMed  CAS  Google Scholar 

  20. Berg H (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54

    Article  PubMed  CAS  Google Scholar 

  21. Matsunaga T, Okamura Y, Fukuda Y et al (2005) Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res 12:157–166

    Article  PubMed  CAS  Google Scholar 

  22. Yamamoto D, Taoka A, Uchihashi T et al (2010) Visualization and structural analysis of the bacterial magnetic organelle magnetosome using atomic force microscopy. Proc Natl Acad Sci USA 107:9382–9387

    Article  PubMed  CAS  Google Scholar 

  23. Zeytuni N, Ozyamak E, Ben-Harush K et al (2011) Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly. Proc Natl Acad Sci USA 108:13369–13370

    Article  CAS  Google Scholar 

  24. Murat D, Quinlan A, Vali H et al (2010) Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc Natl Acad Sci USA 107:5593–5598

    Article  PubMed  CAS  Google Scholar 

  25. Quinlan A, Murat D, Vali H et al (2011) The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization. Mol Microbiol 80:1087–1705

    Article  Google Scholar 

  26. Yang W, Li R, Peng T et al (2010) mamO and mamE genes are essential for magnetosome crystal biomineralization in Magnetospirillum gryphiswaldense MSR-1. Res Microbiol 161:701–705

    Article  PubMed  CAS  Google Scholar 

  27. Draper O, Byrne ME, Li Z et al (2011) MamK, a bacterial actin, forms dynamic filaments in vivo that are regulated by the acidic proteins MamJ and LimJ. Mol Microbiol 82:342–354

    Article  PubMed  CAS  Google Scholar 

  28. Katzmann E, Müller FD, Lang C et al (2011) Magnetosome chains are recruited to cellular division sites and split by asymmetric septation. Mol Microbiol 82:1316–1329

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by research grants (No. 30670508 and No. 31070755) from the National Natural Science Foundation of China to Weidong Pan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Pan.

Additional information

Weidong Pan and Chunlan Xie share equal first authorship.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 144 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, W., Xie, C. & Lv, J. Screening for the Interacting Partners of the Proteins MamK & MamJ by Two-Hybrid Genomic DNA Library of Magnetospirillum magneticum AMB-1. Curr Microbiol 64, 515–523 (2012). https://doi.org/10.1007/s00284-012-0099-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0099-2

Keywords