Effects of Roundup® and Glyphosate on Three Food Microorganisms: Geotrichum candidum, Lactococcus lactis subsp. cremoris and Lactobacillus delbrueckii subsp. bulgaricus


Use of many pesticide products poses the problem of their effects on environment and health. Amongst them, the effects of glyphosate with its adjuvants and its by-products are regularly discussed. The aim of the present study was to shed light on the real impact on biodiversity and ecosystems of Roundup®, a major herbicide used worldwide, and the glyphosate it contains, by the study of their effects on growth and viability of microbial models, namely, on three food microorganisms (Geotrichum candidum, Lactococcus lactis subsp. cremoris and Lactobacillus delbrueckii subsp. bulgaricus) widely used as starters in traditional and industrial dairy technologies. The presented results evidence that Roundup® has an inhibitory effect on microbial growth and a microbicide effect at lower concentrations than those recommended in agriculture. Interestingly, glyphosate at these levels has no significant effect on the three studied microorganisms. Our work is consistent with previous studies which demonstrated that the toxic effect of glyphosate was amplified by its formulation adjuvants on different human cells and other eukaryotic models. Moreover, these results should be considered in the understanding of the loss of microbiodiversity and microbial concentration observed in raw milk for many years.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Missous G, Thammavongs B, Dieuleveux V et al (2007) Improvement of the cryopreservation of the fungal starter Geotrichum candidum by artificial nucleation and temperature downshift control. Cryobiology 55:66–71

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Thammavongs B, Denou E, Missous G et al (2008) Response to environmental stress as a global phenomenon in biology: the example of microorganisms. Microbes Environ 23:20–23

    PubMed  Article  Google Scholar 

  3. 3.

    Yousef A, Juneja VK (2003) Microbial stress adaptation and food safety. CRC Press, Boca Raton

    Google Scholar 

  4. 4.

    Wouters JTM, Ayad EHE, Hugenholtz J et al (2002) Microbes from raw milk for fermented dairy products. Int Dairy J 12:91–109

    Article  CAS  Google Scholar 

  5. 5.

    Denou E, Thammavongs B, Gueguen M et al (2005) Interspecies protection against freezing stress within a food microbial community. Cell Preserv Technol 3:75–83

    Article  Google Scholar 

  6. 6.

    Thammavongs B, Poncet JM, Desmasures N et al (2004) Resin straw as an alternative system to securely store frozen microorganisms. J Microbiol Methods 57:181–186

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Beresford TP, Fitzsimons NA, Brennan NL et al (2001) Recent advances in cheese microbiology. Int Dairy J 11:259–274

    Article  CAS  Google Scholar 

  8. 8.

    Petry S, Furlan S, Crepeau MJ et al (2000) Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium. Appl Environ Microbiol 66:3427–3431

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Roissart de H, Luquet FM (Eds.) (1994) Bactéries lactiques: aspects fondamentaux et technologiques. Uriage, France

  10. 10.

    Smith MT, Poot GA, de Cock AW (2000) Re-examination of some species of the genus Geotrichum Link: Fr. Antonie Van Leeuwenhoek 77:71–81

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Ueda-Nishimura K, Mikata K (2000) Two distinct 18S rRNA secondary structures in Dipodascus (Hemiascomycetes). Microbiology 146(Pt 5):1045–1051

    PubMed  CAS  Google Scholar 

  12. 12.

    Guéguen M, Schmidt J (1992) Les germes utiles: Les levures et Geotrichum candidum, Paris, France

  13. 13.

    Prillinger H, Molnar O, Eliskases-Lechner F et al (1999) Phenotypic and genotypic identification of yeasts from cheese. Antonie Van Leeuwenhoek 75:267–283

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Panoff JM, Desmasures N, Thammavongs B et al (2002) In situ protection of microbiodiversity is under consideration. Microbiology 148:625

    PubMed  CAS  Google Scholar 

  15. 15.

    Chamba JF, Beal C, Delbes C et al (2005) Sauvegarde de consortia microbiens fromagers : Mise au point de méthodes de conservation ex situ à long terme. Les Actes du BRG 5:393–409

    Google Scholar 

  16. 16.

    Clive J (2009) Global status of commercialized Biotech/GM crops, ISAAA Brief 41

  17. 17.

    Cox C (2004) Herbicide factsheet—Glyphosate. J Pest Reform 24:10–15

    Google Scholar 

  18. 18.

    IFEN (2006) Report on pesticides in waters. Data 2003–2004

  19. 19.

    Relyea RA (2005) The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol Appl 15:618–627

    Article  Google Scholar 

  20. 20.

    EFSA (2009) Modification of the residue definition of glyphosate in genetically modified maize grain and soybeans, and in products of animal origin on request from the European Commission. EFSA J 7:42

    Google Scholar 

  21. 21.

    Acquavella JF, Alexander BH, Mandel JS et al (2004) Glyphosate biomonitoring for farmers and their families: results from the Farm Family Exposure Study. Environ Health Perspect 112:321–326

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Benachour N, Sipahutar H, Moslemi S et al (2007) Time- and dose-dependent effects of roundup on human embryonic and placental cells. Arch Environ Contam Toxicol 53:126–133

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Benachour N, Séralini GE (2009) Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells. Chem Res Toxicol 22:97–105

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Gasnier C, Dumont C, Benachour N et al (2009) Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology 262:184–191

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Richard S, Moslemi S, Sipahutar H et al (2005) Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ Health Perspect 113:716–720

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Oliveira AG, Telles LF, Hess RA et al (2007) Effects of the herbicide Roundup on the epididymal region of drakes Anas platyrhynchos. Reprod Toxicol 23:182–191

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Yousef MI, Salem MH, Ibrahim HZ et al (1995) Toxic effects of carbofuran and glyphosate on semen characteristics in rabbits. J Environ Sci Health B 30:513–534

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Benedetti AL, Vituri Cde L, Trentin AG et al (2004) The effects of sub-chronic exposure of Wistar rats to the herbicide Glyphosate-Biocarb. Toxicol Lett 153:227–232

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Beuret CJ, Zirulnik F, Gimenez MS (2005) Effect of the herbicide glyphosate on liver lipoperoxidation in pregnant rats and their fetuses. Reprod Toxicol 19:501–504

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Marc J, Mulner-Lorillon O, Boulben S et al (2002) Pesticide Roundup provokes cell division dysfunction at the level of CDK1/cyclin B activation. Chem Res Toxicol 15:326–331

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Marc J, Le Breton M, Cormier P et al (2005) A glyphosate-based pesticide impinges on transcription. Toxicol Appl Pharmacol 203:1–8

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Braconi D, Sotgiu M, Millucci L et al (2006) Comparative analysis of the effects of locally used herbicides and their active ingredients on a wild-type wine Saccharomyces cerevisiae strain. J Agric Food Chem 54:3163–3172

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Hernando MD, De Vettori S, Martinez Bueno MJ et al (2007) Toxicity evaluation with Vibrio fischeri test of organic chemicals used in aquaculture. Chemosphere 68:724–730

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Bonnet JL, Bonnemoy F, Dusser M et al (2007) Assessment of the potential toxicity of herbicides and their degradation products to nontarget cells using two microorganisms, the bacteria Vibrio fischeri and the ciliate Tetrahymena pyriformis. Environ Toxicol 22:78–91

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Pace NR (2001) The universal nature of biochemistry. Proc Natl Acad Sci USA 98:805–808

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Chakravarty P, Sidhu SS (1987) Effect of glyphosate, hexazinone and triclopyr on in vitro growth of five species of ectomycorrhizal fungi. Eur J For Pathol 17:204–210

    Article  CAS  Google Scholar 

  37. 37.

    Estok D, Freedman B, Boyle D (1989) Effects of the herbicides 2,4-d, glyphosate, hexazinone, and triclopyr on the growth of three species of ectomycorrhizal fungi. Bull Environ Contam Toxicol 42:835–839

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Williams GM, Kroes R, Munro IC (2000) Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol 31:117–165

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Barry G, Kishore G, Padgette S et al (1992) Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to crop plants. Curr Top Plant Physiol 7:139–145

    Google Scholar 

  40. 40.

    Fitzgibbon JE, Braymer HD (1990) Cloning of a gene from Pseudomonas sp. strain PG2982 conferring increased glyphosate resistance. Appl Environ Microbiol 56:3382–3388

    PubMed  CAS  Google Scholar 

  41. 41.

    Priestman MA, Funke T, Singh IM et al (2005) 5-Enolpyruvylshikimate-3-phosphate synthase from Staphylococcus aureus is insensitive to glyphosate. FEBS Lett 579:728–732

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Liu Z, Lu W, Chen M et al (2006) Genetic analysis of glyphosate tolerance in Halomonas variabilis strain HTG7. World J Microbiol Biotechnol 22:681–686

    Article  CAS  Google Scholar 

  43. 43.

    Reis LF, Van Sluys MA, Garratt RC et al (2006) GMOs: building the future on the basis of past experience. An Acad Bras Cienc 78:667–686

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Everett KD, Dickerson HW (2003) Ichthyophthirius multifiliis and Tetrahymena thermophila tolerate glyphosate but not a commercial herbicidal formulation. Bull Environ Contam Toxicol 70:731–738

    PubMed  Article  CAS  Google Scholar 

Download references


The authors thank J.-M. Bré for his technical assistance during the experimentation. This work was supported by the Ministère de l’Enseignement Supérieur et de la Recherche. E. C. holds a fellowship from the Conseil Régional de Basse-Normandie and CRIIGEN (Committee for Independent Research and Information on Genetic Engineering). The authors would also like to thank Testbiotech for their support.

Author information



Corresponding author

Correspondence to Jean-Michel Panoff.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Clair, E., Linn, L., Travert, C. et al. Effects of Roundup® and Glyphosate on Three Food Microorganisms: Geotrichum candidum, Lactococcus lactis subsp. cremoris and Lactobacillus delbrueckii subsp. bulgaricus . Curr Microbiol 64, 486–491 (2012). https://doi.org/10.1007/s00284-012-0098-3

Download citation


  • Glyphosate
  • Roundup
  • Shikimic Acid
  • Geotrichum Candidum
  • Lactococcus Lactis Subsp