Current Microbiology

, Volume 64, Issue 5, pp 486–491 | Cite as

Effects of Roundup® and Glyphosate on Three Food Microorganisms: Geotrichum candidum, Lactococcus lactis subsp. cremoris and Lactobacillus delbrueckii subsp. bulgaricus

  • Emilie Clair
  • Laura Linn
  • Carine Travert
  • Caroline Amiel
  • Gilles-Eric Séralini
  • Jean-Michel PanoffEmail author


Use of many pesticide products poses the problem of their effects on environment and health. Amongst them, the effects of glyphosate with its adjuvants and its by-products are regularly discussed. The aim of the present study was to shed light on the real impact on biodiversity and ecosystems of Roundup®, a major herbicide used worldwide, and the glyphosate it contains, by the study of their effects on growth and viability of microbial models, namely, on three food microorganisms (Geotrichum candidum, Lactococcus lactis subsp. cremoris and Lactobacillus delbrueckii subsp. bulgaricus) widely used as starters in traditional and industrial dairy technologies. The presented results evidence that Roundup® has an inhibitory effect on microbial growth and a microbicide effect at lower concentrations than those recommended in agriculture. Interestingly, glyphosate at these levels has no significant effect on the three studied microorganisms. Our work is consistent with previous studies which demonstrated that the toxic effect of glyphosate was amplified by its formulation adjuvants on different human cells and other eukaryotic models. Moreover, these results should be considered in the understanding of the loss of microbiodiversity and microbial concentration observed in raw milk for many years.


Glyphosate Roundup Shikimic Acid Geotrichum Candidum Lactococcus Lactis Subsp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank J.-M. Bré for his technical assistance during the experimentation. This work was supported by the Ministère de l’Enseignement Supérieur et de la Recherche. E. C. holds a fellowship from the Conseil Régional de Basse-Normandie and CRIIGEN (Committee for Independent Research and Information on Genetic Engineering). The authors would also like to thank Testbiotech for their support.


  1. 1.
    Missous G, Thammavongs B, Dieuleveux V et al (2007) Improvement of the cryopreservation of the fungal starter Geotrichum candidum by artificial nucleation and temperature downshift control. Cryobiology 55:66–71PubMedCrossRefGoogle Scholar
  2. 2.
    Thammavongs B, Denou E, Missous G et al (2008) Response to environmental stress as a global phenomenon in biology: the example of microorganisms. Microbes Environ 23:20–23PubMedCrossRefGoogle Scholar
  3. 3.
    Yousef A, Juneja VK (2003) Microbial stress adaptation and food safety. CRC Press, Boca RatonGoogle Scholar
  4. 4.
    Wouters JTM, Ayad EHE, Hugenholtz J et al (2002) Microbes from raw milk for fermented dairy products. Int Dairy J 12:91–109CrossRefGoogle Scholar
  5. 5.
    Denou E, Thammavongs B, Gueguen M et al (2005) Interspecies protection against freezing stress within a food microbial community. Cell Preserv Technol 3:75–83CrossRefGoogle Scholar
  6. 6.
    Thammavongs B, Poncet JM, Desmasures N et al (2004) Resin straw as an alternative system to securely store frozen microorganisms. J Microbiol Methods 57:181–186PubMedCrossRefGoogle Scholar
  7. 7.
    Beresford TP, Fitzsimons NA, Brennan NL et al (2001) Recent advances in cheese microbiology. Int Dairy J 11:259–274CrossRefGoogle Scholar
  8. 8.
    Petry S, Furlan S, Crepeau MJ et al (2000) Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium. Appl Environ Microbiol 66:3427–3431PubMedCrossRefGoogle Scholar
  9. 9.
    Roissart de H, Luquet FM (Eds.) (1994) Bactéries lactiques: aspects fondamentaux et technologiques. Uriage, FranceGoogle Scholar
  10. 10.
    Smith MT, Poot GA, de Cock AW (2000) Re-examination of some species of the genus Geotrichum Link: Fr. Antonie Van Leeuwenhoek 77:71–81PubMedCrossRefGoogle Scholar
  11. 11.
    Ueda-Nishimura K, Mikata K (2000) Two distinct 18S rRNA secondary structures in Dipodascus (Hemiascomycetes). Microbiology 146(Pt 5):1045–1051PubMedGoogle Scholar
  12. 12.
    Guéguen M, Schmidt J (1992) Les germes utiles: Les levures et Geotrichum candidum, Paris, FranceGoogle Scholar
  13. 13.
    Prillinger H, Molnar O, Eliskases-Lechner F et al (1999) Phenotypic and genotypic identification of yeasts from cheese. Antonie Van Leeuwenhoek 75:267–283PubMedCrossRefGoogle Scholar
  14. 14.
    Panoff JM, Desmasures N, Thammavongs B et al (2002) In situ protection of microbiodiversity is under consideration. Microbiology 148:625PubMedGoogle Scholar
  15. 15.
    Chamba JF, Beal C, Delbes C et al (2005) Sauvegarde de consortia microbiens fromagers : Mise au point de méthodes de conservation ex situ à long terme. Les Actes du BRG 5:393–409Google Scholar
  16. 16.
    Clive J (2009) Global status of commercialized Biotech/GM crops, ISAAA Brief 41Google Scholar
  17. 17.
    Cox C (2004) Herbicide factsheet—Glyphosate. J Pest Reform 24:10–15Google Scholar
  18. 18.
    IFEN (2006) Report on pesticides in waters. Data 2003–2004Google Scholar
  19. 19.
    Relyea RA (2005) The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol Appl 15:618–627CrossRefGoogle Scholar
  20. 20.
    EFSA (2009) Modification of the residue definition of glyphosate in genetically modified maize grain and soybeans, and in products of animal origin on request from the European Commission. EFSA J 7:42Google Scholar
  21. 21.
    Acquavella JF, Alexander BH, Mandel JS et al (2004) Glyphosate biomonitoring for farmers and their families: results from the Farm Family Exposure Study. Environ Health Perspect 112:321–326PubMedCrossRefGoogle Scholar
  22. 22.
    Benachour N, Sipahutar H, Moslemi S et al (2007) Time- and dose-dependent effects of roundup on human embryonic and placental cells. Arch Environ Contam Toxicol 53:126–133PubMedCrossRefGoogle Scholar
  23. 23.
    Benachour N, Séralini GE (2009) Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells. Chem Res Toxicol 22:97–105PubMedCrossRefGoogle Scholar
  24. 24.
    Gasnier C, Dumont C, Benachour N et al (2009) Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology 262:184–191PubMedCrossRefGoogle Scholar
  25. 25.
    Richard S, Moslemi S, Sipahutar H et al (2005) Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ Health Perspect 113:716–720PubMedCrossRefGoogle Scholar
  26. 26.
    Oliveira AG, Telles LF, Hess RA et al (2007) Effects of the herbicide Roundup on the epididymal region of drakes Anas platyrhynchos. Reprod Toxicol 23:182–191PubMedCrossRefGoogle Scholar
  27. 27.
    Yousef MI, Salem MH, Ibrahim HZ et al (1995) Toxic effects of carbofuran and glyphosate on semen characteristics in rabbits. J Environ Sci Health B 30:513–534PubMedCrossRefGoogle Scholar
  28. 28.
    Benedetti AL, Vituri Cde L, Trentin AG et al (2004) The effects of sub-chronic exposure of Wistar rats to the herbicide Glyphosate-Biocarb. Toxicol Lett 153:227–232PubMedCrossRefGoogle Scholar
  29. 29.
    Beuret CJ, Zirulnik F, Gimenez MS (2005) Effect of the herbicide glyphosate on liver lipoperoxidation in pregnant rats and their fetuses. Reprod Toxicol 19:501–504PubMedCrossRefGoogle Scholar
  30. 30.
    Marc J, Mulner-Lorillon O, Boulben S et al (2002) Pesticide Roundup provokes cell division dysfunction at the level of CDK1/cyclin B activation. Chem Res Toxicol 15:326–331PubMedCrossRefGoogle Scholar
  31. 31.
    Marc J, Le Breton M, Cormier P et al (2005) A glyphosate-based pesticide impinges on transcription. Toxicol Appl Pharmacol 203:1–8PubMedCrossRefGoogle Scholar
  32. 32.
    Braconi D, Sotgiu M, Millucci L et al (2006) Comparative analysis of the effects of locally used herbicides and their active ingredients on a wild-type wine Saccharomyces cerevisiae strain. J Agric Food Chem 54:3163–3172PubMedCrossRefGoogle Scholar
  33. 33.
    Hernando MD, De Vettori S, Martinez Bueno MJ et al (2007) Toxicity evaluation with Vibrio fischeri test of organic chemicals used in aquaculture. Chemosphere 68:724–730PubMedCrossRefGoogle Scholar
  34. 34.
    Bonnet JL, Bonnemoy F, Dusser M et al (2007) Assessment of the potential toxicity of herbicides and their degradation products to nontarget cells using two microorganisms, the bacteria Vibrio fischeri and the ciliate Tetrahymena pyriformis. Environ Toxicol 22:78–91PubMedCrossRefGoogle Scholar
  35. 35.
    Pace NR (2001) The universal nature of biochemistry. Proc Natl Acad Sci USA 98:805–808PubMedCrossRefGoogle Scholar
  36. 36.
    Chakravarty P, Sidhu SS (1987) Effect of glyphosate, hexazinone and triclopyr on in vitro growth of five species of ectomycorrhizal fungi. Eur J For Pathol 17:204–210CrossRefGoogle Scholar
  37. 37.
    Estok D, Freedman B, Boyle D (1989) Effects of the herbicides 2,4-d, glyphosate, hexazinone, and triclopyr on the growth of three species of ectomycorrhizal fungi. Bull Environ Contam Toxicol 42:835–839PubMedCrossRefGoogle Scholar
  38. 38.
    Williams GM, Kroes R, Munro IC (2000) Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol 31:117–165PubMedCrossRefGoogle Scholar
  39. 39.
    Barry G, Kishore G, Padgette S et al (1992) Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to crop plants. Curr Top Plant Physiol 7:139–145Google Scholar
  40. 40.
    Fitzgibbon JE, Braymer HD (1990) Cloning of a gene from Pseudomonas sp. strain PG2982 conferring increased glyphosate resistance. Appl Environ Microbiol 56:3382–3388PubMedGoogle Scholar
  41. 41.
    Priestman MA, Funke T, Singh IM et al (2005) 5-Enolpyruvylshikimate-3-phosphate synthase from Staphylococcus aureus is insensitive to glyphosate. FEBS Lett 579:728–732PubMedCrossRefGoogle Scholar
  42. 42.
    Liu Z, Lu W, Chen M et al (2006) Genetic analysis of glyphosate tolerance in Halomonas variabilis strain HTG7. World J Microbiol Biotechnol 22:681–686CrossRefGoogle Scholar
  43. 43.
    Reis LF, Van Sluys MA, Garratt RC et al (2006) GMOs: building the future on the basis of past experience. An Acad Bras Cienc 78:667–686PubMedCrossRefGoogle Scholar
  44. 44.
    Everett KD, Dickerson HW (2003) Ichthyophthirius multifiliis and Tetrahymena thermophila tolerate glyphosate but not a commercial herbicidal formulation. Bull Environ Contam Toxicol 70:731–738PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Emilie Clair
    • 2
    • 4
    • 5
  • Laura Linn
    • 1
  • Carine Travert
    • 2
  • Caroline Amiel
    • 3
    • 4
    • 5
  • Gilles-Eric Séralini
    • 2
    • 4
    • 5
  • Jean-Michel Panoff
    • 1
    • 4
    • 5
    Email author
  1. 1.UR ABTE (EA4651) IFR 146 ICORE, Institute of BiologyUniversité de Caen Basse-Normandie (Campus 1) Esplanade de la PaixCaen CedexFrance
  2. 2.OERECA Laboratory, EA2608, IFR 146 ICORE, Institute of BiologyUniversité de Caen Basse-Normandie, Esplanade de la PaixCaen CedexFrance
  3. 3.UR ABTE (EA4651) IFR 146 ICORE, I.U.T./UFR des SciencesUniversité de Caen Basse-Normandie (Campus 2) Boulevard du Maréchal JuinCAEN CedexFrance
  4. 4.Risk Pole, MRSH-CNRSUniversité de Caen Basse-NormandieCaen CedexFrance
  5. 5.CRIIGENParisFrance

Personalised recommendations