Current Microbiology

, Volume 64, Issue 5, pp 457–462 | Cite as

Ciprofloxacin-Induced Antibacterial Activity is Reversed by Vitamin E and Vitamin C

  • Majed M. MasadehEmail author
  • Nizar M. Mhaidat
  • Karem H. Alzoubi
  • Sayer I. Al-Azzam
  • Ashraf I. Shaweesh


In the present study, we investigated the possible involvement of oxidative stress in ciprofloxacin-induced cytotoxicity against several reference bacteria including Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, and clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA). Oxidative stress was assessed by measurement of hydrogen peroxide generation using a FACScan flow cytometer. The antibacterial activity of ciprofloxacin was assessed using the disk diffusion method and by measuring the minimum inhibitory concentration (MIC). Ciprofloxacin induced a dose-dependent antibacterial activity against all bacteria where the highest tested concentration was 100 ug/ml. Results revealed that E. coli cells were highly sensitive to ciprofloxacin (MIC = 0.21 μg/mL ± 0.087), P. aeruginosa and S. aureus cells were intermediately sensitive (MIC = 5.40 μg/mL ± 0.14; MIC = 3.42 μg/mL ± 0.377, respectively), and MRSA cells were highly resistant (MIC = 16.76 μg/mL ± 2.1). Pretreatment of E. coli cells with either vitamin E or vitamin C has significantly protected cells against ciprofloxacin-induced cytotoxicity. These results indicate the possible antagonistic properties for vitamins C or E when they are used concurrently with ciprofloxacin.


Reactive Oxygen Species Minimum Inhibitory Concentration Quinolones Enrofloxacin Dichlorofluorescein Diacetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge Jordan University of Science & Technology, Irbid; Jordan, for their financial support (grant number 73-2006).


  1. 1.
    Albesa I, Becerra MC, Battan PC, Paez PL (2004) Oxidative stress involved in the antibacterial action of different antibiotics. Biochem Biophys Res Commun 317:605–609PubMedCrossRefGoogle Scholar
  2. 2.
    Al-Soud YA, Al-Masoudi NA (2003) A new class of dihaloquinolones bearing N′-aldehydoglycosylhydrazides, mercapto-1,2,4-triazole, oxadiazoline and a-amino ester precursors: synthesis and antimicrobial activity. J Braz Chem Soc 14:790–796CrossRefGoogle Scholar
  3. 3.
    Becerra MC, Albesa I (2002) Oxidative stress induced by ciprofloxacin in Staphylococcus aureus. Biochem Biophys Res Commun 297:1003–1007PubMedCrossRefGoogle Scholar
  4. 4.
    Carreras I, Castellari M, Garcia Regueiro JA, Guerrero L, Esteve-Garcia E, Sarraga C (2004) Influence of enrofloxacin administration and alpha-tocopheryl acetate supplemented diets on oxidative stability of broiler tissues. Poult Sci 83:796–802PubMedGoogle Scholar
  5. 5.
    Chen CR, Malik M, Snyder M, Drlica K (1996) DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. J Mol Biol 258:627–637PubMedCrossRefGoogle Scholar
  6. 6.
    Drlica K, Zhao X (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61:377–392PubMedGoogle Scholar
  7. 7.
    Forsgren A, Bredberg A, Pardee AB, Schlossman SF, Tedder TF (1987) Effects of ciprofloxacin on eucaryotic pyrimidine nucleotide biosynthesis and cell growth. Antimicrob Agents Chemother 31:774–779PubMedGoogle Scholar
  8. 8.
    Gellert M (1981) DNA topoisomerases. Annu Rev Biochem 50:879–910PubMedCrossRefGoogle Scholar
  9. 9.
    Gootz TD, Barrett JF, Sutcliffe JA (1990) Inhibitory effects of quinolone antibacterial agents on eucaryotic topoisomerases and related test systems. Antimicrob Agents Chemother 34:8–12PubMedGoogle Scholar
  10. 10.
    Goswami M, Mangoli SH, Jawali N (2006) Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli. Antimicrob Agents Chemother 50:949–954PubMedCrossRefGoogle Scholar
  11. 11.
    Gurbay A, Garrel C, Osman M, Richard MJ, Favier A, Hincal F (2002) Cytotoxicity in ciprofloxacin-treated human fibroblast cells and protection by vitamin E. Hum Exp Toxicol 21:635–641PubMedCrossRefGoogle Scholar
  12. 12.
    Gurbay A, Gonthier B, Signorini-Allibe N, Barret L, Favier A, Hincal F (2006) Ciprofloxacin-induced DNA damage in primary culture of rat astrocytes and protection by vitamin E. Neurotoxicology 27:6–10PubMedCrossRefGoogle Scholar
  13. 13.
    Gurbay A, Hincal F (2004) Ciprofloxacin-induced glutathione redox status alterations in rat tissues. Drug Chem Toxicol 27:233–242PubMedCrossRefGoogle Scholar
  14. 14.
    Hensley K, Benaksas EJ, Bolli R et al (2004) New perspectives on vitamin E: gamma-tocopherol and carboxyelthylhydroxychroman metabolites in biology and medicine. Free Radic Biol Med 36:1–15PubMedCrossRefGoogle Scholar
  15. 15.
    Hincal F, Gurbay A, Favier A (2003) Biphasic response of ciprofloxacin in human fibroblast cell cultures. Nonlinearity Biol Toxicol Med 1:481–492PubMedCrossRefGoogle Scholar
  16. 16.
    Ivanov DV, Budanov SV (2006) Ciprofloxacin and antibacterial therapy of respiratory tract infections. Antibiot Khimioter 51:29–37Google Scholar
  17. 17.
    Lawrence JW, Claire DC, Weissig V, Rowe TC (1996) Delayed cytotoxicity and cleavage of mitochondrial DNA in ciprofloxacin-treated mammalian cells. Mol Pharmacol 50:1178–1188PubMedGoogle Scholar
  18. 18.
    Lawrence JW, Darkin-Rattray S, Xie F, Neims AH, Rowe TC (1993) 4-Quinolones cause a selective loss of mitochondrial DNA from mouse L1210 leukemia cells. J Cell Biochem 51:165–174PubMedCrossRefGoogle Scholar
  19. 19.
    Nelson JM, Chiller TM, Powers JH, Angulo FJ (2007) Fluoroquinolone-resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: a public health success story. Clin Infect Dis 44:977–980PubMedCrossRefGoogle Scholar
  20. 20.
    Nordmann P, Pechinot A, Kazmierczak A (1989) Cytotoxicity and uptake of pefloxacin, ciprofloxacin, and ofloxacin in primary cultures of rat hepatocytes. J Antimicrob Chemother 24:355–363PubMedCrossRefGoogle Scholar
  21. 21.
    Oliphant CM, Green GM (2002) Quinolones: a comprehensive review. Am Fam Physician 65:455–464PubMedGoogle Scholar
  22. 22.
    Oomori Y, Yasue T, Aoyama H, Hirai K, Suzue S, Yokota T (1988) Effects of fleroxacin on HeLa cell functions and topoisomerase II. J Antimicrob Chemother 22(Suppl D):91–97PubMedGoogle Scholar
  23. 23.
    Pfister K, Mazur D, Vormann J, Stahlmann R (2007) Diminished ciprofloxacin-induced chondrotoxicity by supplementation with magnesium and vitamin E in immature rats. Antimicrob Agents Chemother 51:1022–1027PubMedCrossRefGoogle Scholar
  24. 24.
    Pouzaud F, Bernard-Beaubois K, Thevenin M, Warnet JM, Hayem G, Rat P (2004) In vitro discrimination of fluoroquinolones toxicity on tendon cells: involvement of oxidative stress. J Pharmacol Exp Ther 308:394–402PubMedCrossRefGoogle Scholar
  25. 25.
    Sarraga C, Carreras I, Garcia Regueiro JA, Castellari M (2006) The combined effects of alpha-tocopheryl acetate supplementation and enrofloxacin administration on oxidative stability of turkey meat. Br Poult Sci 47:708–713PubMedCrossRefGoogle Scholar
  26. 26.
    Suller MT, Lloyd D (2002) The antibacterial activity of vancomycin towards Staphylococcus aureus under aerobic and anaerobic conditions. J Appl Microbiol 92:866–872PubMedCrossRefGoogle Scholar
  27. 27.
    Umezawa N, Arakane K, Ryu A, Mashiko S, Hirobe M, Nagano T (1997) Participation of reactive oxygen species in phototoxicity induced by quinolone antibacterial agents. Arch Biochem Biophys 342:275–281PubMedCrossRefGoogle Scholar
  28. 28.
    Wagai N, Tawara K (1991) Important role of oxygen metabolites in quinolone antibacterial agent-induced cutaneous phototoxicity in mice. Arch Toxicol 65:495–499PubMedCrossRefGoogle Scholar
  29. 29.
    Wagai N, Tawara K (1992) Possible direct role of reactive oxygens in the cause of cutaneous phototoxicity induced by five quinolones in mice. Arch Toxicol 66:392–397PubMedCrossRefGoogle Scholar
  30. 30.
    Wagai N, Tawara K (1992) Possible reasons for differences in phototoxic potential of a 5 quinolone antibacterial agents: generation of toxic oxygen. Free Radic Res Commun 17:387–398PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Majed M. Masadeh
    • 1
    Email author
  • Nizar M. Mhaidat
    • 1
  • Karem H. Alzoubi
    • 1
  • Sayer I. Al-Azzam
    • 1
  • Ashraf I. Shaweesh
    • 2
  1. 1.Faculty of PharmacyJordan University of Science & TechnologyIrbidJordan
  2. 2.Faculty of DentistryJordan University of Science & TechnologyIrbidJordan

Personalised recommendations