Skip to main content
Log in

Leucobacter margaritiformis sp. nov., Isolated from Bamboo Extract

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-positive aerobic rod-shaped non-motile bacterium designated A23T was isolated from bamboo extract that had been used to remove odor and was characterized to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain A23T belongs to the phylum Actinobacteria. The highest degree of sequence similarities was determined to be with Leucobacter salsicius M1-8T (96.7%), Leucobacter exalbidus K-540BT (96.4%), Leucobacter chromiireducens subsp. chromiireducens L-1T (96.4%), Leucobacter komagatae IFO 15245T (96.4%) and Leucobacter aerolatus Sj10T (96.4%). Chemotaxonomic data revealed that strain A23T possesses menaquinone MK11, and its cell wall peptidoglycan contained 2,4-diaminobutyric acid, alanine, glycine, glutamic acid and γ-aminobutyric acid. The polar lipid profile of strain A23T contained diphosphatidylglycerol, phosphatidylglycerol and an unknown glycolipid. The predominant fatty acids were iso-C16:0 (31.5%), anteiso-C15:0 (43.2%) and anteiso-C17:0 (13.9%), all of which corroborated the assignment of the strain to the genus Leucobacter. Based on these data, A23T (=KEMC 551-022T = JCM 17538T) should be classified as the type strain for a novel Leucobacter species, for which the name Leucobacter margaritiformis sp. nov. is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Behrendt U, Ulrich A, Schumann P (2008) Leucobacter tardus sp. nov., isolated from the phyllosphere of Solanum tuberosum L. Int J Syst Evol Microbiol 58:2574–2578

    Article  PubMed  CAS  Google Scholar 

  2. Cappuccino JG, Sherman N (2002) Microbiology: a laboratory manual, 6th edn. Pearson Education, Inc. Benjamin Cummings, CA

  3. Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    PubMed  CAS  Google Scholar 

  4. Doetsch RN (1981) Determinative methods of light microscopy. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GH (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, pp 21–33

  5. Euzéby JP (2008) List of prokaryotic names with standing in nomenclature. http://www.bacterio.cict.fr/. Accessed 20 Nov 2010

  6. Felsenstein J (1985) Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  7. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  8. Halpern M, Shaked T, Pukall R et al (2009) Leucobacter chironomi sp. nov., a chromate-resistant bacterium isolated from a chironomid egg mass. Int J Syst Evol Microbiol 59:665–670

    Article  PubMed  CAS  Google Scholar 

  9. Kim MK, Im WT, Ohta H et al (2005) Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J Microbiol 43:152–157

    PubMed  CAS  Google Scholar 

  10. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  11. Koide CL, Collier AC, Berry MJ et al (2011) The effect of bamboo extract on hepatic biotransforming enzymes—findings from an obese-diabetic mouse model. J Ethnopharmacol 133:37–45

    Article  PubMed  Google Scholar 

  12. Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    Article  CAS  Google Scholar 

  13. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  14. Lin YC, Uemori K, de Briel DA et al (2004) Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae. Int J Syst Evol Microbiol 54:1669–1676

    Article  PubMed  CAS  Google Scholar 

  15. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  16. Minnikin DE, O’Donnell AG, Goodfellow M et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  17. Morais PV, Francisco R, Branco R et al (2004) Leucobacter chromiireducens sp. nov, and Leucobacter aridicollis sp. nov., two new species isolated from a chromium contaminated environment. Syst Appl Microbiol 27:646–652

    Article  PubMed  CAS  Google Scholar 

  18. Morais PV, Paulo C, Francisco R et al (2006) Leucobacter luti sp. nov., and Leucobacter alluvii sp. nov., two new species of the genus Leucobacter isolated under chromium stress. Syst Appl Microbiol 29:414–421

    Article  PubMed  CAS  Google Scholar 

  19. Muir RE, Tan MW (2007) Leucobacter chromiireducens subsp. solipictus subsp. nov., a pigmented bacterium isolated from the nematode Caenorhabditis elegans, and emended description of L. chromiireducens. Int J Syst Evol Microbiol 57:2770–2776

    Article  PubMed  CAS  Google Scholar 

  20. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  21. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark

  22. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    PubMed  CAS  Google Scholar 

  23. Shin NR, Kim MS, Jung MJ et al (2011) Leucobacter celer sp. nov., isolated from Korean fermented seafood. Int J Syst Evol Microbiol 61:2353–2357

    Article  PubMed  CAS  Google Scholar 

  24. Somvanshi VS, Lang E, Schumann P et al (2007) Leucobacter iarius sp. nov., in the family Microbacteriaceae. Int J Syst Evol Microbiol 57:682–686

    Article  PubMed  CAS  Google Scholar 

  25. Takeuchi M, Weiss N, Schumann P et al (1996) Leucobacter komagatae gen. nov., sp. nov., a new aerobic Gram-positive, nonsporulating rod with 2,4-diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:967–971

    Article  PubMed  CAS  Google Scholar 

  26. Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    Article  CAS  Google Scholar 

  27. Thompson JD, Gibson TJ, Plewniak F et al (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  28. Weisburg WG, Barns SM, Pelletier DA et al (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  29. Yuan JX (1983) Research on the production and botanical origin of bamboo juice in Eastern China. Zhong Yao Tong Bao 8(10–12):1

    Google Scholar 

Download references

Acknowledgments

This research work was supported by Korea Ministry of Environment as: The GAIA Project (173-092-012) and Korea Ministry of Educational Science and Technology (2011-0000544).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Seob Lee.

Additional information

The NCBI GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain A23T is JN038197.

Electronic supplementary material

Below is the link to the electronic supplementary material.

284_2012_89_MOESM1_ESM.ppt

Supplementary Fig. S1. Maximum-parsimony phylogenetic tree based on 16S rRNA gene sequences, showing the phylogenetic relationships between strain A23T and related species (all Leucobacter species and related genera). Bar represents 20 substitutions per nucleotide position. Microbial names in bold indicate type species of the related genera. (PPT 182 kb)

284_2012_89_MOESM2_ESM.ppt

Supplementary Fig. S2. Maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences, showing the phylogenetic relationships between strain A23T and related species (all Leucobacter species and related genera). Bar represents 0.02 substitutions per nucleotide position. Microbial names in bold indicate type species of the related genera. (PPT 177 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JH., Lee, SS. Leucobacter margaritiformis sp. nov., Isolated from Bamboo Extract. Curr Microbiol 64, 441–448 (2012). https://doi.org/10.1007/s00284-012-0089-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0089-4

Keywords

Navigation