Skip to main content
Log in

The GAL10 Gene is Located 40 kbp Away from the GAL7-GAL1 Region in the Yeast Kazachstania naganishii

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Of the genes involved in galactose metabolism, GAL7, GAL10, and GAL1 are tightly linked in this order on chromosome II in Saccharomyces cerevisiae. While several species of the order Saccharomycetales have similar gene organization, Kazachstania naganishii is unique, in which GAL7 and GAL1 are close to each other whereas GAL10 is substantially apart from them on chromosome XI. In this study, we inserted the recognition sequence of I-SceI homing-endonuclease into GAL10 and also into the intervening segment of GAL7-GAL1. By cleaving chromosome DNA of the gene-manipulated strain with I-SceI, we obtained evidence that chromosome XI (610 kbp) was replaced with three fragments (305, 265, and 40 kbp). Using appropriate probes, we further found that GAL10 was about 40 kbp apart from the GAL7-GAL1 cluster and that orientation of GAL10 was reversed comparing to the S. cerevisiae counter part. We, therefore, contend that comparison of the organization of the GAL cluster among Saccharomycetales is of importance to elucidate evolution of chromosomes and that the experimental scheme developed in this study is useful for this line of investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amberg DC, Burke DJ, Strathern JN (2005) Methods in yeast genetics: a Cold Spring Harbor laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  2. Byrne KP, Wolfe KH (2005) The yeast gene order browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res 15:1456–1461

    Article  PubMed  CAS  Google Scholar 

  3. Citron BA, Donelson JE (1984) Sequence of the Saccharomyces GAL region and its transcription in vivo. J Bacteriol 158:269–278

    PubMed  CAS  Google Scholar 

  4. Conant GC, Wolfe KH (2008) Probabilistic cross-species inference of orthologous genomic regions created by whole-genome duplication in yeast. Genetics 179:1681–1692

    Article  PubMed  Google Scholar 

  5. Fischer G, James SA, Roberts IN, Oliver SG, Louis EJ (2000) Chromosomal evolution in Saccharomyces. Nature 405:451–454

    Article  PubMed  CAS  Google Scholar 

  6. Hittinger CT, Gonçalves P, Sampaio JP, Dover J, Johnston M, Rokas A (2010) Remarkably ancient balanced polymorphisms in a multi-locus gene network. Nature 464:54–58

    Article  PubMed  CAS  Google Scholar 

  7. Hittinger CT, Rokas A, Carroll SB (2004) Parallel inactivation of multiple GAL pathway genes and ecological diversification in yeasts. Proc Natl Acad Sci USA 101:14144–14149

    Article  PubMed  CAS  Google Scholar 

  8. Hisatomi T, Yanagishima N, Banno I (1986) Induction of heterothallic strains and their genetic and physiological characterization in a homothallic strain of the yeast Saccharomyces exiguus. Curr Genet 10:887–892

    Article  PubMed  CAS  Google Scholar 

  9. Inoue K, Kajihara H, Umemura T, Hisatomi T, Tsuboi M (1993) Physical characterization of the chromosomal DNA of the yeast Saccharomyces exiguus. Plant Cell Physiol 34:997–1001

    CAS  Google Scholar 

  10. Johnston M, Carlson M (1992) Regulation of carbon and phosphate utilization. In: Jones EW, Pringle JR, Broach J (eds) The Molecular and cellular biology of the yeast Saccharomyces: gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 193–281

    Google Scholar 

  11. Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254

    Article  PubMed  CAS  Google Scholar 

  12. Keogh RS, Seoighe C, Wolfe KH (1998) Evolution of gene order and chromosome number in Saccharomyces, Kluyveromyces and related fungi. Yeast 14:443–457

    Article  PubMed  CAS  Google Scholar 

  13. Kodama T, Hisatomi T, Kakiuchi M, Aya R, Yoshida K, Bando Y, Takami T, Tsuboi M (2003) Unique distribution of GAL genes on chromosome XI in the yeast Saccharomyces naganishii. Curr Microbiol 47:497–500

    Article  PubMed  CAS  Google Scholar 

  14. Slot JC, Rokas A (2010) Multiple GAL pathway gene clusters evolved independently and by different mechanisms in fungi. Proc Natl Acad Sci USA 107:10136–10141

    Article  PubMed  CAS  Google Scholar 

  15. Kurtzman CP (2003) Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other member of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res 4:233–245

    Article  PubMed  CAS  Google Scholar 

  16. Kurtzman CP, Robnett CJ (2003) Phylogenetic relationship among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res 3:417–432

    Article  PubMed  CAS  Google Scholar 

  17. Mikata K, Ueda-Nishimura K, Hisatomi T (2001) Three new species of Saccharomyces sensu lato van der Walt from Yaku Island in Japan: Saccharomyces naganishii sp nov., Saccharomyces humaticus sp. nov., and Saccharomyces yakushimaensis sp. nov. Int J Syst Evol Microbiol 51:2189–2198

    Article  PubMed  CAS  Google Scholar 

  18. Park SM, Ohkuma M, Masuda Y, Ohta A, Takagi M (1997) Galactose-inducible expression systems in Candida maltosa using promoters of newly-isolated GAL1 and GAL10 genes. Yeast 13:21–29

    Article  PubMed  CAS  Google Scholar 

  19. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  20. Seoighe C, Wolfe KH (1999) Yeast genome evolution in the post-genome era. Curr Opin Microbiol 2:548–554

    Article  PubMed  CAS  Google Scholar 

  21. Skrzypek M, Maleszka R (1994) A gene homologous to that encoding UDP galactose-4-epimerase is inducible by xylose in the yeast Pachysolen tannophilus. Gene 140:127–129

    Article  PubMed  CAS  Google Scholar 

  22. Webster TD, Dickson RC (1988) Nucleotide sequence of the galactose gene cluster of Kluyveromyces lactis. Nucleic Acids Res 16:8192–8194

    Article  PubMed  CAS  Google Scholar 

  23. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    Article  PubMed  CAS  Google Scholar 

  24. Wong S, Butler G, Wolfe KH (2002) Gene order evolution and paleopolyploidy in hemiascomycete yeasts. Proc Natl Acad Sci USA 99:9272–9277

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Mr. Y. Igari, Mr. H. Satoh, Mr. K. Kosaka, and Miss R. Nagai for their faithful assistances. This study was supported by Grant no. 12640688 to T. Hisatomi from the Japanese Ministry of Education, Science, and Sports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taisuke Hisatomi.

Additional information

Chisa Sugihara and Taisuke Hisatomi contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugihara, C., Hisatomi, T., Kodama, T. et al. The GAL10 Gene is Located 40 kbp Away from the GAL7-GAL1 Region in the Yeast Kazachstania naganishii . Curr Microbiol 63, 366 (2011). https://doi.org/10.1007/s00284-011-9988-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-011-9988-z

Keywords

Navigation