Skip to main content

Advertisement

Log in

Influence of Pseudomonas aeruginosa pvdQ Gene on Altering Antibiotic Susceptibility Under Swarming Conditions

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In Pseudomonas aeruginosa PAO1, the pvdQ gene has been shown to have at least two functions. It encodes the acylase enzyme and hydrolyzes 3-oxo-C12-HSL, the key signaling molecule of quorum sensing system. In addition, pvdQ is involved in swarming motility. It is required for up-regulated during swarming motility, which is triggered by high cell densities. As high-density bacterial populations also display elevated antibiotic resistance, studies have demonstrated that swarm-cell differentiation in P. aeruginosa promotes increased resistance to various antibiotics. PvdQ acts as a signal during swarm-cell differentiation, and thus may play a role in P. aeruginosa antibiotic resistance. The aim of this study is to examine whether pvdQ was involved in modifying antibiotic susceptibility during swarming conditions, and to investigate the mechanism by which this occurred. We constructed the PAO1pMEpvdQ strain, which overproduced PvdQ. PAO1pMEpvdQ promotes swarming motility, while PAO1ΔpvdQ abolishes swarming motility. In addition, both PAO1 and PAO1pMEpvdQ acquired resistance to ceftazidime, ciprofloxacin, meropenem, polymyxin B, and gentamicin, though PAO1pMEpvdQ exhibited a two to eightfold increase in antibiotic resistance compared to PAO1. These results indicate that pvdQ plays an important role in elevating antibiotic resistance via swarm-cell differentiation and possibly other mechanisms as well. We analyzed outer membrane permeability. Our data also suggest that pvdQ decreases P. aeruginosa outer membrane permeability, thereby elevating antibiotic resistance under swarming conditions. Our results suggest new approaches for reducing P. aeruginosa resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hutchison ML, Govan JR (1999) Pathogenicity of microbes associated with cystic fibrosis. Microbes Infect 1:1005–1014

    Article  PubMed  CAS  Google Scholar 

  2. Iglewski BH, Van Delden C (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560

    Article  PubMed  Google Scholar 

  3. Hancock RE, Speert DP (2000) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat 3:247–255

    Article  PubMed  CAS  Google Scholar 

  4. Strateva T, Yordanov D (2009) Pseudomonas aeruginosa—a phenomenon of bacterial resistance. J Med Microbiol 58:1133–1148

    Article  PubMed  CAS  Google Scholar 

  5. Arora SK, Neely AN, Blair B, Lory S, Ramphal R (2005) Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infections. Infect Immun 73:4395–4398

    Article  PubMed  CAS  Google Scholar 

  6. Yeung AT, Torfs EC, Jamshidi F, Bains M, Wiegand I, Hancock RE, Overhage J (2009) Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators, including MetR. J Bacteriol 191:5592–5602

    Article  PubMed  CAS  Google Scholar 

  7. Rashid MH, Kornberg A (2000) Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 97:4885–4890

    Article  PubMed  CAS  Google Scholar 

  8. Harshey RM, Matsuyama T (1994) Dimorphic transition in Escherichia coli and Salmonella typhimurium: Surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci USA 91:8631–8635

    Article  PubMed  CAS  Google Scholar 

  9. Caiazza NC, Merritt JH, Brothers KM, O’Toole GA (2007) Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189:3603–3612

    Article  PubMed  CAS  Google Scholar 

  10. Fraser GM, Hughes C (1999) Swarming motility. Curr Opin Microbiol 2:630–635

    Article  PubMed  CAS  Google Scholar 

  11. Butler MT, Wang Q, Harshey RM (2010) Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci USA 107:3776–3781

    Article  PubMed  CAS  Google Scholar 

  12. Surette MG, Kim W (2003) Swarming populations of Salmonella represent a unique physiological state coupled to multiple mechanisms of antibiotic resistance. Biol Proced Online 5:189–196

    Article  PubMed  Google Scholar 

  13. Sio CF, Otten LG, Cool RH, Diggle SP, Quax WJ (2006) Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun 74:1673–1682

    Article  PubMed  CAS  Google Scholar 

  14. Ye L, Li G, Li H, Wang L, Mao Y, Song J (2011) Pseudomonas aeruginosa pvdQ gene prevents Caco-2 cells from obstruction of quorum-sensing signal. Curr Microbiol 62:32–37

    Article  PubMed  CAS  Google Scholar 

  15. Jimenez PN, Koch G, Papaioannou E, Quax WJ (2010) Role of PvdQ in Pseudomonas aeruginosa virulence under iron-limiting conditions. Microbiology 156:49–59

    Article  CAS  Google Scholar 

  16. Lamont IL, Martin LW (2003) Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology 149:833–842

    Article  PubMed  CAS  Google Scholar 

  17. Overhage J, Bains M, Brazas MD, Hancock RE (2008) Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol 190:2671–2679

    Article  PubMed  CAS  Google Scholar 

  18. Köhler T, Curty LK, Barja F, van Delden C, Pechère JC (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996

    Article  PubMed  Google Scholar 

  19. Maniatis T, Fritsch E, Sambrook J (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Press, Plainview

    Google Scholar 

  20. Huang JJ, Han JI, Zhang LH, Leadbetter JR (2003) Utilization of acyl-homoserine lactone quorum signals for growth by a Soil Pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 69:5941–5949

    Article  PubMed  CAS  Google Scholar 

  21. Yoneda CH, Murata T, Gotoh N, Yamamoto H, Fujiwara H, Nishino T, Shimizu E (2005) Measurement of Pseudomonas aeruginosa multidrug efflux pumps by quantitative real-time polymerase chain reaction. FEMS Microbiol Lett 243:125–131

    Article  PubMed  CAS  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  23. Caiazza NC, Shanks RM, O’Toole GA (2005) Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol 187:7351–7361

    Article  PubMed  CAS  Google Scholar 

  24. Overhage J, Lewenza S, Marr AK, Hancock RE (2007) Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library. J Bacteriol 189:2164–2169

    Article  PubMed  CAS  Google Scholar 

  25. Peeters E, Nelis HJ, Coenye T (2008) Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 72:157–165

    Article  PubMed  CAS  Google Scholar 

  26. Macia MD, Borrell N, Perez JL, Oliver A (2004) Detection and susceptibility testing of hypermutable Pseudomonas aeruginosa strains with the E test and disk diffusion. Antimicrob Agents Chemother 48:2665–2672

    Article  PubMed  CAS  Google Scholar 

  27. Ozhak-Baysan B, Ongut G, Oqunc D, Gunseren F, Sepin-Ozen N, Ozturk F, Aktepe OC, Gultekin M (2010) Evaluation of in vitro activities of tigecycline and various antibiotics against Brucella spp. Pol J Microbiol 59:55–60

    PubMed  CAS  Google Scholar 

  28. Gooderham WJ, Bains M, McPhee JB, Wiegand I, Hancock RE (2008) Induction by cationic antimicrobial peptides and involvement in intrinsic polymyxin and antimicrobial peptide resistance, biofilm formation, and swarming motility of PsrA in Pseudomonas aeruginosa. J Bacteriol 190:5624–5634

    Article  PubMed  CAS  Google Scholar 

  29. Loh B, Grant C, Hancock RE (1984) Use of the fluorescent probe 1-N-Phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother 26:546–551

    PubMed  CAS  Google Scholar 

  30. Hocquet D, Bertrand X, Kohler T, Talon D, Plesiat P (2003) Genetic and phenotypic variations of a resistant Pseudomonas aeruginosa epidemic clone. Antimicrob Agents Chemother 47:1887–1894

    Article  PubMed  CAS  Google Scholar 

  31. Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794:808–816

    PubMed  CAS  Google Scholar 

  32. Bassler BL (2002) Small talk. Cell-to-cell communication in bacteria. Cell 109:421–424

    Article  PubMed  CAS  Google Scholar 

  33. Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468

    Article  PubMed  CAS  Google Scholar 

  34. Reimmann C, Ginet N, Michel L, Keel C, Michaux P, Haas D (2002) Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology 148:923–932

    PubMed  CAS  Google Scholar 

  35. Merritt JH, Brothers KM, Kuchma SL, O’Toole GA (2007) SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J Bacteriol 189:8154–8164

    Article  PubMed  CAS  Google Scholar 

  36. Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27–33

    Article  PubMed  CAS  Google Scholar 

  37. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    Article  PubMed  CAS  Google Scholar 

  38. Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86:1637–1645

    Article  PubMed  CAS  Google Scholar 

  39. Hirsch EB, Tam VH (2010) Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res 10:441–451

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by National Natural Science Foundation of China (30873189), China National 973 project (MOST, 2007CB512900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Zhang, C., Gong, F. et al. Influence of Pseudomonas aeruginosa pvdQ Gene on Altering Antibiotic Susceptibility Under Swarming Conditions. Curr Microbiol 63, 377 (2011). https://doi.org/10.1007/s00284-011-9979-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-011-9979-0

Keywords

Navigation