Skip to main content
Log in

Cytotoxic Activity of Fungal Metabolites from the Pathogenic Fungus Beauveria bassiana: An Intraspecific Evaluation of Beauvericin Production

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The cyclohexadepsipeptide beauvericin (BEA) is a mycotoxin produced by the fungus Beauveria bassiana (Bals.). Using ELISA, different accessions of B. bassiana, belonging to distinct genetic groups, were analyzed to determine their variability in BEA production. The cytotoxic effect of pure mycotoxins and crude extracts was also tested on insect cell lines SF-9 and SF-21. The results showed that BEA production was significantly different between all strains. Bb 9024 exhibited the highest levels (98.56 mg/l), while Bb 9001 the lowest (15.66 mg/l). Statistical difference was found when BEA CC50 values (2.81 and 6.94 μM) were compared with those values from others mycotoxins (4.23–11.95 μM). Although no correlation has been observed between beauvericin production and phylogenetic grouping, the results suggest a comprehensible involvement of these metabolites during the infection process. The biological evaluation of metabolites produce by entomopathogenic fungi provides better criteria to design more effective formulations for pest management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amiri-besheli B, Khambay B, Cameron S et al (2000) Inter- and intra-specific variation in destruxin production by insect pathogenic Metarhizium spp., and its significance to pathogenesis. Mycol Res 104:447–452

    Article  CAS  Google Scholar 

  2. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  3. Calò L, Fornelli F, Nenna S et al (2003) Beauvericin cytotoxicity to the invertebrate cell line SF-9. J Appl Genet 44:515–520

    PubMed  Google Scholar 

  4. Calò L, Fornelli F, Ramires R et al (2004) Cytotoxic effects of the mycotoxin beauvericin to human cell lines of myeloid origin. Pharmacol Res 49:73–77

    Article  PubMed  Google Scholar 

  5. Cruz LP, Gaitán A, Góngora CE (2006) Exploiting the genetic diversity of Beauveria bassiana for improving the biological control of the coffee berry borer through the use of strain mixtures. Appl Microbiol Biotechnol 71:918–926

    Article  PubMed  CAS  Google Scholar 

  6. Evlakhova A, Rakitin A (1968) Effect of experimental mycosis on electrical activity of nerve chain of Locusta migratoria manilensis Mey. Dokl Akad Nauk SSSR Biol Sci Sect (Engl Transl) 178:485–488

    CAS  Google Scholar 

  7. Fornelli F, Minervini F, Logrieco A (2004) Cytotoxicity of fungal metabolites to lepidopteran (Spodoptera frugiperda) cell line (SF-9). J Invertebr Pathol 85:74–79

    Article  PubMed  CAS  Google Scholar 

  8. Gaitán A, Valderrama AM, Saldarriaga G et al (2002) Genetic variability of Beauveria bassiana associated with the coffee berry borer Hypothenemus hampei and other insects. Mycol Res 106:1307–1314

    Article  Google Scholar 

  9. Gupta S, Krasnoff SB, Underwood NL et al (1991) Isolation of beauvericin as an insect toxin from Fusarium semitectum and Fusarium moniliforme var. subglutinans. Mycopathologia 115:185–189

    Article  PubMed  CAS  Google Scholar 

  10. Gupta S, Montlor C, Huang YS (1995) Isolation of novel beauvericin analogues from the fungus Beauveria bassiana. J Nat Prod 58:733–738

    Article  CAS  Google Scholar 

  11. Gutleb A, Morrison E, Murk AJ (2002) Cytotoxicity assay for mycotoxins produced by Fusarium strains: a review. Environ Toxicol Pharm 11:309–320

    Article  CAS  Google Scholar 

  12. Hamill RL, Higgens CE, Boaz HE, Gorman M (1969) The structure of beauvericin, a new depsipeptide antibiotic to Artemia salina. Tetrahedron Lett 49:4255–4258

    Article  CAS  Google Scholar 

  13. Logrieco A, Moretti A, Fornelli F et al (1996) Fusaproliferin production by Fusarium subglutinans and its toxicity to Artemia salina, SF-9 insect cells, and IARC/LCL 171 Human B Lymphocytes. Appl Environ Microbiol 62:3378–3384

    PubMed  CAS  Google Scholar 

  14. Mei L, Zhang L, Dai R (2009) An inhibition study of beauvericin on human and rat cytochrome P450 enzymes and its pharmacokinetics in rats. J Enzyme Inhib Med Chem 24:753–762

    Article  PubMed  CAS  Google Scholar 

  15. Moretti A, Belisario A, Tafuri A et al (2002) Production of beauvericin by different races of Fusarium oxysporum f. sp.melonis, the Fusarium wilt agent of muskmelon. Eur J Plant Pathol 108:661–666

    Article  CAS  Google Scholar 

  16. Peczynska-czoch W, Urbánczyk MJ, Balazy S (1991) Formation of beauvericin by selected strains of Beauveria bassiana. Arch Immunol Ther Exp 39:175–179

    CAS  Google Scholar 

  17. Quesada-Moraga E, Vey A (2003) Intra-specific variation in virulence and in vitro production of mycotoxins active against locust among B. bassiana (bals.) vuill. and effects of in vivo and in vitro passage on these factors. Biocontrol Sci Technol 13:323–340

    Article  Google Scholar 

  18. Quesada-Moraga E, Vey A (2004) Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol Res 108:441–452

    Article  PubMed  CAS  Google Scholar 

  19. Roberts DW (1981) Toxins of entomopathogenic fungi. In: Burges HD (ed) Microbial control of pests and plant disease 1970–1980. Academic Press, London, pp 441–463

    Google Scholar 

  20. Skrobek A, Butt TM (2005) Toxicity testing of destruxins and crude extracts from the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett 251:23–28

    Article  PubMed  CAS  Google Scholar 

  21. Song HH, Lee HS, Jeong JH et al (2008) Diversity in beauvericin and enniatins H, I, and mk1688 by Fusarium oxysporum isolated from potato. Int J Food Microbiol 122:296–301

    Article  PubMed  CAS  Google Scholar 

  22. Turner NW, Subrahmanyam S, Piletsky SA (2009) Analytical methods for determination of mycotoxins: a review. Anal Chim Acta 632:168–180

    Article  PubMed  CAS  Google Scholar 

  23. Vaughn JL, Goodwin RH, Thompkins GJ et al (1977) The establishment of two cell lines from the insect S. frugiperda (Lepidoptera, Noctuidae). In Vitro 13:213–217

    Article  PubMed  CAS  Google Scholar 

  24. Vega FE, Posada F, Catherine A et al (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Article  Google Scholar 

  25. Vey A, Hoagland RE, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents. CABI Publishing, Wallingford, pp 311–346

    Chapter  Google Scholar 

  26. Xu Y, Orozco R, Wijeratne EM et al (2008) Biosynthesis of the cyclooligomer depsipeptide Beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chem Biol 15:898–907

    Article  PubMed  CAS  Google Scholar 

  27. Zacharuk R (1973) Penetration of the cuticular layers of elaterid larvae (Coleoptera) by the fungus M. anisopliae and notes on bacterial invasion. J Invertebr Pathol 21:101–106

    Article  Google Scholar 

  28. Zizca J, Weiser J (1993) Effect of Beauvericin a toxic metabolite of Beauveria bassiana, on the ultrastructure of Culex pipiens autogenicus larvae. Cytobios 75:13–19

    Google Scholar 

Download references

Acknowledgments

The work was supported by Colombian Institute for development of Science and Technology “Francisco José de Caldas” COLCIENCIAS and National Federation of Coffee Growers of Colombia by its National Coffee Research Center, CENICAFE. We want also to thank the Coordination of Improvement of Higher Education, CAPES, Brazil, for the support given to JWAV (First Author). Additionally, the authors thank to the Laboratory of virology at CENARGEN for training given to JWAV and Universidad Católica de Manizales—UCM (Colombia) for the support received in their laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge W. Arboleda Valencia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valencia, J.W.A., Gaitán Bustamante, A.L., Jiménez, A.V. et al. Cytotoxic Activity of Fungal Metabolites from the Pathogenic Fungus Beauveria bassiana: An Intraspecific Evaluation of Beauvericin Production. Curr Microbiol 63, 306–312 (2011). https://doi.org/10.1007/s00284-011-9977-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9977-2

Keywords

Navigation