Skip to main content
Log in

Synthesis and Characterization of a Novel Extracellular Biogenic Manganese Oxide (Bixbyite-like Mn2O3) Nanoparticle by Isolated Acinetobacter sp.

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Recently, manganese oxides have been considered in the environmental remediation, MRI diagnosis and drug and pharmaceutical industries. Different numbers of physicochemical and biological methods have been reported for the preparation of nanoscale manganese oxides. Although manganese oxide biogenesis by bacterial species has been recognized as the major Mn-oxidizing agent in nature, in this research, for first time, we demonstrated the process which used to produce bixbyite-like Mn2O3 nanoparticles by isolated aerobic bacterium from Persian Gulf water. The 16SRNA sequencing showed that this isolate belong to a gram-negative Acinetobacter which produced nano Mn-oxide crystal particle. Characterization of complement morphology, size and chemical structure of these particles were determined by TEM, SEM, EDAX, XRD and FTIR. The data showed that this bacterium could produce nanosized extracellular bixbyite-like Mn2O3 which depend on enzymatic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams LF, Ghiorse WC (1988) Oxidation state of Mn in the Mn oxide produced by Leptothrix discophora SS-1. Geochim Cosmochim Acta 52:2073–2076

    Article  CAS  Google Scholar 

  2. Avanzato CP et al (2009) Biomimetic synthesis and antibacterial characteristics of magnesium oxide–germanium dioxide nanocomposite powders. J Compos Mater 43:897–910

    Article  CAS  Google Scholar 

  3. Bae KH et al (2011) Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials 32:176–184

    Article  PubMed  CAS  Google Scholar 

  4. Brouwers G-J et al (1999) cumA, a Gene encoding a multicopper oxidase, is involved in Mn2+ oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol 65:1762–1768

    PubMed  CAS  Google Scholar 

  5. Dick GJ, Lee YE, Tebo BM (2006) Manganese(II)-oxidizing bacillus spores in Guaymas Basin hydrothermal sediments and plumes. Appl Environ Microbiol 72:3184–3190

    Article  PubMed  CAS  Google Scholar 

  6. Francis CA, Tebo BM (2002) Enzymatic manganese(II) oxidation by metabolically dormant spores of diverse Bacillus species. Appl Environ Microbiol 68:874–880

    Article  PubMed  CAS  Google Scholar 

  7. Gandía LM, Vicente MA, Gil A (2000) Preparation and characterization of manganese oxide catalysts supported on alumina and zirconia-pillared clays. Appl Catal A Gen 196:281–292

    Article  Google Scholar 

  8. Greene AC, Madgwick JC (1991) Microbial formation of manganese oxides. Appl Environ Microbiol 57:1114–1120

    PubMed  CAS  Google Scholar 

  9. Kim H-S et al (2003) Nanocrystalline todorokite-like manganese oxide produced by bacterial catalysis. J Am Chem Soc 125:14284–14285

    Article  PubMed  CAS  Google Scholar 

  10. Larsen EI, Sly LI, McEwan AG (1999) Manganese(II) adsorption and oxidation by whole cells and a membrane fraction of Pedomicrobium sp. ACM 3067. Arch Microbiol 171:257–264

    Article  CAS  Google Scholar 

  11. Mandal D et al (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  PubMed  CAS  Google Scholar 

  12. Martínez MJ et al (1996) Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 237:424–432

    Article  PubMed  Google Scholar 

  13. Mayhew LE et al (2008) Phylogenetic relationships and functional genes: distribution of a gene (mnxG) encoding a putative manganese-oxidizing enzyme in Bacillus species. Appl Environ Microbiol 74:7265–7271

    Article  PubMed  CAS  Google Scholar 

  14. Meng Y-T et al (2009) Biogenic Mn oxides for effective adsorption of Cd from aquatic environment. Environ Pollut 157:2577–2583

    Article  PubMed  CAS  Google Scholar 

  15. Miyata N et al (2007) Microbial manganese oxide formation and interaction with toxic metal ions. J Biosci Bioeng 104:1–8

    Article  PubMed  CAS  Google Scholar 

  16. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    Article  PubMed  CAS  Google Scholar 

  17. Nealson K (2006) The manganese-oxidizing bacteria. In: Dworkin M et al (eds) The prokaryotes. Springer, New York, pp 222–231

    Chapter  Google Scholar 

  18. Saratovsky I et al (2006) Manganese oxides:  parallels between abiotic and biotic structures. J Am Chem Soc 128:11188–11198

    Article  PubMed  CAS  Google Scholar 

  19. Schladt TD, Graf T, Tremel W (2009) Synthesis and characterization of monodisperse manganese oxide nanoparticles—evaluation of the nucleation and growth mechanism. Chem Mater 21:3183–3190

    Article  CAS  Google Scholar 

  20. Shanmugam S, Gedanken A (2008) Easy single-step route to manganese oxide nanoparticles embedded in carbon and their magnetic properties. J Phys Chem C 112:15752–15758

    Article  CAS  Google Scholar 

  21. Shin J et al (2009) Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angew Chem Int Ed 48:321–324

    Article  CAS  Google Scholar 

  22. Thota S, Prasad B, Kumar J (2010) Formation and magnetic behaviour of manganese oxide nanoparticles. Mater Sci Eng B 167:153–160

    Article  CAS  Google Scholar 

  23. Toner B et al (2005) Spatially resolved characterization of biogenic manganese oxide production within a bacterial biofilm. Appl Environ Microbiol 71:1300–1310

    Article  PubMed  CAS  Google Scholar 

  24. Villalobos M et al (2003) Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochim Cosmochim Acta 67:2649–2662

    Article  CAS  Google Scholar 

  25. Wang W et al (2009) Removal of multi-heavy metals using biogenic manganese oxides generated by a deep-sea sedimentary bacterium—Brachybacterium sp. strain Mn32. Microbiology 155:1989–1996

    Article  PubMed  CAS  Google Scholar 

  26. Whittingham MS, Zavalij PY (2000) Manganese dioxides as cathodes for lithium rechargeable cells: the stability challenge. Solid State Ionics 131:109–115

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the University of Isfahan for financially supporting this study. We would like to thank TEM lab, Aarhus University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baharak Hosseinkhani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseinkhani, B., Emtiazi, G. Synthesis and Characterization of a Novel Extracellular Biogenic Manganese Oxide (Bixbyite-like Mn2O3) Nanoparticle by Isolated Acinetobacter sp.. Curr Microbiol 63, 300–305 (2011). https://doi.org/10.1007/s00284-011-9971-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9971-8

Keywords

Navigation