Skip to main content

Advertisement

Log in

Recognition of Host Proteins by Helicobacter Cysteine-Rich Protein C

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Tetratricopeptide- and sel1-like repeat (SLR) proteins modulate various cellular activities, ranging from transcription regulation to cell-fate control. Helicobacter cysteine-rich proteins (Hcp) consist of several SLRs that are cross-linked by disulfide bridges and have been implicated in host/pathogen interactions. Using pull-down proteomics, several human proteins including Nek9, Hsp90, and Hsc71 have been identified as putative human interaction partners for HcpC. The interaction between the NimA-like protein kinase Nek9 and HcpC has been validated by ELISA and surface plasmon resonance. Recombinant Nek9 is recognized by HcpC with a dissociation constant in the lower micromolar range. This interaction is formed either directly between Nek9 and HcpC or via the formation of a complex with Hsc71. The HcpC homologue HcpA possesses no affinity for Nek9, suggesting that the reported interaction is rather specific for HcpC. These results are consistent with previous observations where Nek9 was targeted upon bacterial or viral invasion. However, further experiments will be required to show that the reported interactions also occur in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Mbp:

Maltose binding protein

TFA:

Trifluoracetic acid

DTT:

Dithiothreitol

BSA:

Bovine serum albumine

TCEP:

Tris(2-carboxyethyl)phosphine

References

  1. Belham C, Roig J, Caldwell JA et al (2003) A mitotic cascade of NIMA family kinases. Nercc1/Nek9 activates the Nek6 and Nek7 kinases. J Biol Chem 278:34897–34909

    Article  PubMed  CAS  Google Scholar 

  2. Bumann D, Aksu S, Wendland M et al (2002) Proteome analysis of secreted proteins of the gastric pathogen Helicobacter pylori. Infect Immun 70:3396–3403

    Article  PubMed  CAS  Google Scholar 

  3. Cattaneo M, Lotti LV, Martino S et al (2009) Functional characterization of two secreted SEL1L isoforms capable of exporting unassembled substrate. J Biol Chem 284:11405–11415

    Article  PubMed  CAS  Google Scholar 

  4. Cattaneo M, Orlandini S, Beghelli S et al (2003) SEL1L expression in pancreatic adenocarcinoma parallels SMAD4 expression and delays tumor growth in vitro and in vivo. Oncogene 22:6359–6368

    Article  PubMed  CAS  Google Scholar 

  5. Christianson JC, Shaler TA, Tyler RE et al (2008) OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat Cell Biol 10:272–282

    Article  PubMed  CAS  Google Scholar 

  6. Cirillo SL, Lum J, Cirillo JD (2000) Identification of novel loci involved in entry by Legionella pneumophila. Microbiology 146:1345–1359

    PubMed  CAS  Google Scholar 

  7. Demand J, Luders J, Hohfeld J (1998) The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol Cell Biol 18:2023–2028

    PubMed  CAS  Google Scholar 

  8. Deml L, Aigner M, Decker J et al (2005) Characterization of the Helicobacter pylori cysteine-rich protein A as a T-helper cell type 1 polarizing agent. Infect Immun 73:4732–4742

    Article  PubMed  CAS  Google Scholar 

  9. Dumrese C, Slomianka L, Ziegler U et al (2009) The secreted Helicobacter cysteine-rich protein A causes adherence of human monocytes and differentiation into a macrophage-like phenotype. FEBS Lett 583:1637–1643

    Article  PubMed  CAS  Google Scholar 

  10. Ehrhardt C, Schmolke M, Matzke A et al (2006) Polyethylenimine, a cost-effective transfection reagent. Signal Transduction 6:179–184

    Article  CAS  Google Scholar 

  11. Friguet B, Chaffotte AF, Djavadi-Ohaniance L et al (1985) Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J Immunol Methods 77:305–319

    Article  PubMed  CAS  Google Scholar 

  12. Gao L, Weck MN, Michel A et al (2009) Association between chronic atrophic gastritis and serum antibodies to 15 Helicobacter pylori proteins measured by multiplex serology. Cancer Res 69:2973–2980

    Article  PubMed  CAS  Google Scholar 

  13. Granelli P, Cattaneo M, Ferrero S et al (2004) SEL1L and squamous cell carcinoma of the esophagus. Clin Cancer Res 10:5857–5861

    Article  PubMed  CAS  Google Scholar 

  14. Grant B, Greenwald I (1996) The Caenorhabditis elegans sel-1 gene, a negative regulator of lin-12 and glp-1, encodes a predicted extracellular protein. Genetics 143:237–247

    PubMed  CAS  Google Scholar 

  15. Haas G, Karaali G, Ebermayer K et al (2002) Immunoproteomics of Helicobacter pylori infection and relation to gastric disease. Proteomics 2:313–324

    Article  PubMed  CAS  Google Scholar 

  16. Holland PM, Milne A, Garka K et al (2002) Purification, cloning, and characterization of Nek8, a novel NIMA-related kinase, and its candidate substrate Bicd2. J Biol Chem 277:16229–16240

    Article  PubMed  CAS  Google Scholar 

  17. Ishikawa F, Matunis MJ, Dreyfuss G et al (1993) Nuclear proteins that bind the pre-mRNA 3′ splice site sequence r(UUAG/G) and the human telomeric DNA sequence d(TTAGGG)n. Mol Cell Biol 13:4301–4310

    PubMed  CAS  Google Scholar 

  18. Ivanov SS, Roy CR (2009) Modulation of ubiquitin dynamics and suppression of DALIS formation by the Legionella pneumophila Dot/Icm system. Cell Microbiol 11:261–278

    Article  PubMed  CAS  Google Scholar 

  19. Jordan P, Heid H, Kinzel V et al (1994) Major cell surface-located protein substrates of an ecto-protein kinase are homologs of known nuclear proteins. Biochemistry 33:14696–14706

    Article  PubMed  CAS  Google Scholar 

  20. Kaneko M, Yasui S, Niinuma Y et al (2007) A different pathway in the endoplasmic reticulum stress-induced expression of human HRD1 and SEL1 genes. FEBS Lett 581:5355–5360

    Article  PubMed  CAS  Google Scholar 

  21. Kettern N, Rogon C, Limmer A et al (2011) The Hsc/Hsp70 co-chaperone network controls antigen aggregation and presentation during maturation of professional antigen presenting cells. PLoS One 6:e16398

    Article  PubMed  CAS  Google Scholar 

  22. Kirchhausen T (2000) Three ways to make a vesicle. Nat Rev Mol Cell Biol 1:187–198

    Article  PubMed  CAS  Google Scholar 

  23. Lelouard H, Gatti E, Cappello F et al (2002) Transient aggregation of ubiquitinated proteins during dendritic cell maturation. Nature 417:177–182

    Article  PubMed  CAS  Google Scholar 

  24. Liu M, Conover GM, Isberg RR (2008) Legionella pneumophila EnhC is required for efficient replication in tumour necrosis factor alpha-stimulated macrophages. Cell Microbiol 10:1906–1923

    Article  PubMed  CAS  Google Scholar 

  25. Lüthy L, Grütter MG, Mittl PR (2002) The crystal structure of Helicobacter pylori cysteine-rich protein B reveals a novel fold for a penicillin-binding protein. J Biol Chem 277:10187–10193

    Article  PubMed  Google Scholar 

  26. Lüthy L, Grütter MG, Mittl PR (2004) The crystal structure of Helicobacter cysteine-rich protein C at 2.0 A resolution: similar peptide-binding sites in TPR and SEL1-like repeat proteins. J Mol Biol 340:829–841

    Article  PubMed  Google Scholar 

  27. Marcotte EM, Pellegrini M, Ng HL et al (1999) Detecting protein function and protein–protein interactions from genome sequences. Science 285:751–753

    Article  PubMed  CAS  Google Scholar 

  28. Melville MW, Katze MG, Tan SL (2000) P58IPK, a novel cochaperone containing tetratricopeptide repeats and a J-domain with oncogenic potential. Cell Mol Life Sci 57:311–322

    Article  PubMed  CAS  Google Scholar 

  29. Mittl PR, Lüthy L, Hunziker P et al (2000) The cysteine-rich protein A from Helicobacter pylori is a beta-lactamase. J Biol Chem 275:17693–17699

    Article  PubMed  CAS  Google Scholar 

  30. Mittl PR, Lüthy L, Reinhardt C et al (2003) Detection of high titers of antibody against Helicobacter cysteine-rich proteins A, B, C, and E in Helicobacter pylori-infected individuals. Clin Diagn Lab Immunol 10:542–545

    PubMed  CAS  Google Scholar 

  31. Mittl PR, Schneider-Brachert W (2007) Sel1-like repeat proteins in signal transduction. Cell Signal 19:20–31

    Article  PubMed  CAS  Google Scholar 

  32. Mueller B, Lilley BN, Ploegh HL (2006) SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER. J Cell Biol 175:261–270

    Article  PubMed  CAS  Google Scholar 

  33. Myszka DG (1999) Improving biosensor analysis. J Mol Recognit 12:279–284

    Article  PubMed  CAS  Google Scholar 

  34. Newton HJ, Sansom FM, Bennett-Wood V et al (2006) Identification of Legionella pneumophila-specific genes by genomic subtractive hybridization with Legionella micdadei and identification of lpnE, a gene required for efficient host cell entry. Infect Immun 74:1683–1691

    Article  PubMed  CAS  Google Scholar 

  35. Newton HJ, Sansom FM, Dao J et al (2007) Sel1 repeat protein LpnE is a Legionella pneumophila virulence determinant that influences vacuolar trafficking. Infect Immun 75:5575–5585

    Article  PubMed  CAS  Google Scholar 

  36. O’Regan L, Blot J, Fry AM (2007) Mitotic regulation by NIMA-related kinases. Cell Div 2:25

    Article  PubMed  Google Scholar 

  37. Odunuga OO, Longshaw VM, Blatch GL (2004) Hop: more than an Hsp70/Hsp90 adaptor protein. Bioessays 26:1058–1068

    Article  PubMed  CAS  Google Scholar 

  38. Ogura M, Perez JC, Mittl PR et al (2007) Helicobacter pylori evolution: lineage-specific adaptations in homologs of eukaryotic Sel1-like genes. PLoS Comput Biol 3:e151

    Article  PubMed  Google Scholar 

  39. Pelka P, Scime A, Mandalfino C et al (2007) Adenovirus E1A proteins direct subcellular redistribution of Nek9, a NimA-related kinase. J Cell Physiol 212:13–25

    Article  PubMed  CAS  Google Scholar 

  40. Picard D (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci 59:1640–1648

    Article  PubMed  CAS  Google Scholar 

  41. Ponting CP, Aravind L, Schultz J et al (1999) Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol 289:729–745

    Article  PubMed  CAS  Google Scholar 

  42. Pratt WB, Morishima Y, Peng HM et al (2010) Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage. Exp Biol Med (Maywood) 235:278–289

    Article  CAS  Google Scholar 

  43. Reinl T, Nimtz M, Hundertmark C et al (2009) Quantitative phosphokinome analysis of the Met pathway activated by the invasin internalin B from Listeria monocytogenes. Mol Cell Proteomics 8:2778–2795

    Article  PubMed  CAS  Google Scholar 

  44. Roig J, Groen A, Caldwell J et al (2005) Active Nercc1 protein kinase concentrates at centrosomes early in mitosis and is necessary for proper spindle assembly. Mol Biol Cell 16:4827–4840

    Article  PubMed  CAS  Google Scholar 

  45. Roig J, Mikhailov A, Belham C et al (2002) Nercc1, a mammalian NIMA-family kinase, binds the Ran GTPase and regulates mitotic progression. Genes Dev 16:1640–1658

    Article  PubMed  CAS  Google Scholar 

  46. Sabarth N, Lamer S, Zimny-Arndt U et al (2002) Identification of surface proteins of Helicobacter pylori by selective biotinylation, affinity purification, and two-dimensional gel electrophoresis. J Biol Chem 277:27896–27902

    Article  PubMed  CAS  Google Scholar 

  47. Salaun L, Linz B, Suerbaum S et al (2004) The diversity within an expanded and redefined repertoire of phase-variable genes in Helicobacter pylori. Microbiology 150:817–830

    Article  PubMed  Google Scholar 

  48. Schallus T, Jaeckh C, Feher K et al (2008) Malectin: a novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation. Mol Biol Cell 19:3404–3414

    Article  PubMed  CAS  Google Scholar 

  49. Shin BK, Wang H, Yim AM et al (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278:7607–7616

    Article  PubMed  CAS  Google Scholar 

  50. Sinclair JF, O’Brien AD (2002) Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin-gamma of enterohemorrhagic Escherichia coli O157:H7. J Biol Chem 277:2876–2885

    Article  PubMed  CAS  Google Scholar 

  51. Sinclair JF, O’Brien AD (2004) Intimin types alpha, beta, and gamma bind to nucleolin with equivalent affinity but lower avidity than to the translocated intimin receptor. J Biol Chem 279:33751–33758

    Article  PubMed  CAS  Google Scholar 

  52. Watanabe K, Tachibana M, Kim S et al (2009) EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells. J Biomed Sci 16:113

    Article  PubMed  Google Scholar 

  53. Watanabe T, Hirano K, Takahashi A et al (2010) Nucleolin on the cell surface as a new molecular target for gastric cancer treatment. Biol Pharm Bull 33:796–803

    Article  PubMed  CAS  Google Scholar 

  54. Watanabe T, Tsuge H, Imagawa T et al (2010) Nucleolin as cell surface receptor for tumor necrosis factor-alpha inducing protein: a carcinogenic factor of Helicobacter pylori. J Cancer Res Clin Oncol 136:911–921

    Article  PubMed  CAS  Google Scholar 

  55. Weber SS, Ragaz C, Hilbi H (2009) The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE. Cell Microbiol 11:442–460

    Article  PubMed  CAS  Google Scholar 

  56. Wilkinson KD (2004) Quantitative analysis of protein–protein interactions. Methods Mol Biol 261:15–32

    PubMed  CAS  Google Scholar 

  57. Wood LD, Irvin BJ, Nucifora G et al (2003) Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor suppressor. Proc Natl Acad Sci USA 100:3257–3262

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the Velux Foundation (Zürich, Switzerland) to P.R.E.M. and Prof. J. Fritz-Steuber.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peer R. E. Mittl.

Electronic supplementary material

Below is the link to the electronic supplementary material. Results of the pull-down analysis in Scaffold format. The file can be viewed and processed using the program Scaffold 3 (Proteome Software, Inc. 1340 SW Bertha Blvd., Suite 10, Portland, OR 97219)

Supplementary material 1 (SF3 7795 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roschitzki, B., Schauer, S. & Mittl, P.R.E. Recognition of Host Proteins by Helicobacter Cysteine-Rich Protein C. Curr Microbiol 63, 239–249 (2011). https://doi.org/10.1007/s00284-011-9969-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9969-2

Keywords

Navigation