Skip to main content
Log in

Genetic and Electron-Microscopic Characterization of ‘Rickettsiella agriotidis’, a new Rickettsiella Pathotype Associated with Wireworm, Agriotes sp. (Coleoptera: Elateridae)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Wireworms, the polyphagous larvae of click beetles belonging to the genus Agriotes (Coleoptera: Elateridae), are severe and widespread agricultural pests affecting numerous crops. A previously unknown intracellular bacterium has been identified in a diseased Agriotes larva. Microscopic studies revealed the subcellular structures characteristic of Rickettsiella infections. Molecular phylogenetic analysis based on 16S ribosomal RNA and signal recognition particle receptor (FtsY) encoding sequences demonstrates that the wireworm pathogen belongs to the taxonomic genus Rickettsiella. Therefore, the new pathotype designation ‘R. agriotidis’ is proposed to refer to this organism. Moreover, genetic analysis makes it likely that—on the basis of the currently accepted organization of the genus Rickettsiella—this new pathotype should be considered a synonym of the nomenclatural type species, Rickettsiella popilliae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Cordaux R, Paces-Fessy M, Raimond M et al (2007) Molecular characterization and evolution of arthropod pathogenic Rickettsiella bacteria. Appl Environ Microbiol 73:5045–5047

    Article  PubMed  CAS  Google Scholar 

  3. Corsaro D, Thomas V, Goy G et al (2007) Candidatus Rhabdochlamydia crassificans, an intracellular bacterial pathogen of the cockroach Blatta orientalis (Insecta: Blattodea). Syst Appl Microbiol 30:221–228

    Article  PubMed  CAS  Google Scholar 

  4. Czarnetzki AB, Tebbe CC (2004) Diversity of bacteria associated with Collembola—a cultivation-independent survey based on PCR-amplified 16S rRNA genes. FEMS Microbiol Ecol 49:217–227

    Article  PubMed  CAS  Google Scholar 

  5. Drobne D, Strus J, Znidarsic N et al (1999) Morphological description of bacterial infection of digestive glands in the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). J Invertebr Pathol 73:113–119

    Article  PubMed  Google Scholar 

  6. Everett KDE, Bush RM, Andersen AA (1999) Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49:415–440

    Article  PubMed  CAS  Google Scholar 

  7. Federici BA (1980) Reproduction and morphogenesis of Rickettsiella chironomi, an unusual intracellular procaryotic parasite of midge larvae. J Bacteriol 143:995–1002

    PubMed  CAS  Google Scholar 

  8. Fournier P-E, Raoult D (2005) Genus II. Rickettsiella Philip 1956, 267AL. In: Garrity GM, Brenner DJ, Krieg NR et al (eds) Bergey’s manual of systematic bacteriology, vol 2, part B, 2nd edn. Springer, New York, pp 241–247

    Google Scholar 

  9. Fournier P-E, Suhre K, Fournous G et al (2006) Estimation of prokaryote genomic DNA G + C content by sequencing universally conserved genes. Int J Syst Evol Microbiol 56:1025–1029

    Article  PubMed  CAS  Google Scholar 

  10. Frutos R, Federici BA, Revet B et al (1994) Taxonomic studies of Rickettsiella, Rickettsia, and Chlamydia using genomic DNA. J Invertebr Pathol 63:294–300

    Article  PubMed  CAS  Google Scholar 

  11. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  12. Hasegawa M, Kishino H, Yano T-A (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  PubMed  CAS  Google Scholar 

  13. Kostanjsek R, Strus J, Drobne D et al (2004) Candidatus Rhabdochlamydia porcellionis, an intracellular bacterium from the hepatopancreas of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda). Int J Syst Evol Microbiol 54:543–549

    Article  PubMed  CAS  Google Scholar 

  14. Kurtti TJ, Palmer AT, Oliver JH (2002) Rickettsiella-like bacteria in Ixodes woodi (Acari: Ixodidae). J Med Entomol 39:534–540

    Article  PubMed  Google Scholar 

  15. Leclerque A (2008) Whole genome-based assessment of the taxonomic position of the arthropod pathogenic bacterium Rickettsiella grylli. FEMS Microbiol Lett 283:117–127

    Article  PubMed  CAS  Google Scholar 

  16. Leclerque A (2008) Reorganization and monophyly of the genus Rickettsiella: all in good time. Appl Environ Microbiol 74:5263–5264

    Article  PubMed  CAS  Google Scholar 

  17. Leclerque A, Kleespies RG (2008) 16S ribosomal RNA, GroEL, and MucZ based assessment of the taxonomic position of ‘Rickettsiella melolonthae’ and its implications for the organization of the genus Rickettsiella. Int J Syst Evol Microbiol 58:749–755

    Article  PubMed  CAS  Google Scholar 

  18. Leclerque A, Kleespies RG (2008) Genetic and electron-microscopic characterization of ‘Rickettsiella tipulae’, an intracellular bacterial pathogen of the crane fly, Tipula paludosa. J Invertebr Pathol 98:329–334

    Article  PubMed  CAS  Google Scholar 

  19. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  20. Radek R (2000) Light and electron microscopic study of a Rickettsiella species from the cockroach Blatta orientalis. J Invertebr Pathol 76:249–256

    Article  PubMed  CAS  Google Scholar 

  21. Roux V, Bergoin M, Lamaze N et al (1997) Reassessment of the taxonomic position of Rickettsiella grylli. Int J Syst Bacteriol 47:1255–1257

    Article  PubMed  CAS  Google Scholar 

  22. Schmidt HA, Strimmer K, Vingron M et al (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  CAS  Google Scholar 

  23. Stackebrandt E, Goebel BM (1994) A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  24. Sufyan M, Neuhoff D, Furlan L (2007) Investigations on click beetles using pheromone traps. Bull Oilb/Srop 30:83–87

    Google Scholar 

  25. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  PubMed  CAS  Google Scholar 

  26. Tamura K, Dudley J, Nei M et al (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  27. Tanada Y, Kaya HK (1993) Insect pathology, chap 5 VI Rickettsial infections. Academic Press, San Diego, pp 153–158

    Google Scholar 

  28. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  29. Vernon RS, Van Herk WG, Clodius M et al (2009) Wireworm management I: stand protection versus wireworm mortality with wheat seed treatments. J Econ Entomol 102:2126–2136

    Article  PubMed  CAS  Google Scholar 

  30. Vidal S (2010) Probleme durch neue Schädlinge. Land For 21:17–19

    Google Scholar 

  31. Weisburg WG, Barns SM, Pelletier DA et al (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  32. Weiss E, Dasch GA, Chang K-P (1984) Genus VIII. Rickettsiella Philip 1956. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 713–717

    Google Scholar 

  33. Wille H, Martignoni ME (1952) Vorläufige Mitteilung über einen neuen Krankheitstypus beim Engerling von Melolontha vulgaris F. Schweiz Z Allg Pathol Bakteriol 15:470–473

    CAS  Google Scholar 

  34. Yang Z (1993) Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol Biol Evol 10:1396–1401

    PubMed  CAS  Google Scholar 

  35. Yousfi A, Louis C, Meynadier G (1979) Etude ultrastructurale de la transformation du corps élémentaire en corps initial chez les Rickettsiella. Experientia 35:1175–1176

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the German Federal Ministry of Food, Agriculture and Consumer Protection (BMELV) through the Federal Office for Agriculture and Food (BLE), grant number 2808HS005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Leclerque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leclerque, A., Kleespies, R.G., Ritter, C. et al. Genetic and Electron-Microscopic Characterization of ‘Rickettsiella agriotidis’, a new Rickettsiella Pathotype Associated with Wireworm, Agriotes sp. (Coleoptera: Elateridae). Curr Microbiol 63, 158–163 (2011). https://doi.org/10.1007/s00284-011-9958-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9958-5

Keywords

Navigation