Skip to main content
Log in

Preliminary In Vitro Insights into the Use of Natural Fungal Pathogens of Leaf-cutting Ants as Biocontrol Agents

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Leaf-cutting ants are one of the main herbivores of the Neotropics, where they represent an important agricultural pest. These ants are particularly difficult to control because of the complex network of microbial symbionts. Leaf-cutting ants have traditionally been controlled through pesticide application, but there is a need for alternative, more environmentally friendly, control methods such as biological control. Potential promising biocontrol candidates include the microfungi Escovopsis spp. (anamorphic Hypocreales), which are specialized pathogens of the fungi the ants cultivate for food. These pathogens are suppressed through ant behaviors and ant-associated antibiotic-producing Actinobacteria. In order to be an effective biocontrol agent, Escovopsis has to overcome these defenses. Here, we evaluate, using microbial in vitro assays, whether defenses in the ant-cultivated fungus strain (Leucoagaricus sp.) and Actinobacteria from the ant pest Acromyrmex lundii have the potential to limit the use of Escovopsis in biocontrol. We also explore, for the first time, possible synergistic biocontrol between Escovopsis and the entomopathogenic fungus Lecanicillium lecanii. All strains of Escovopsis proved to overgrow A. lundii cultivar in less than 7 days, with the Escovopsis strain isolated from a different leaf-cutting ant species being the most efficient. Escovopsis challenged with a Streptomyces strain isolated from A. lundii did not exhibit significant growth inhibition. Both results are encouraging for the use of Escovopsis as a biocontrol agent. Although we found that L. lecanii can suppress the growth of the cultivar, it also had a negative impact on Escovopsis, making the success of simultaneous use of these two fungi for biocontrol of A. lundii questionable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abramowski D, Currie CR, Poulsen M (2011) Caste specialization in behavioral defenses against fungus garden parasites in Acromyrmex octospinosus leaf-cutting ants. Insectes Soc 58:65–75

    Article  Google Scholar 

  2. Agresti A (1991) Categorical data analysis. Wiley, New York

    Google Scholar 

  3. Anjos N, Moreira DDO, Della Lucia TMC (1993) Manejo integrado de formigas cortadeiras em reflorestamentos. In: Della Lucia TMC (ed) As formigas cortadeiras Mina Gerais. Universidade Federal de Viçosa, Brazil, pp 212–241

    Google Scholar 

  4. Ayala Zermeño MA, Mier T, Sánchez-Robles J, Toriello C (2005) Variabilidad intraespecífica del crecimiento de Lecanicillium lecanii por efecto de la temperatura. Revista Mexicana de Micología 20:93–97

    Google Scholar 

  5. Barke J, Seipkel RF, Grüschow S, Heavens D, Drou N, Bibb MJ, Goss RJM, Yu DW, Hutchings MI (2010) A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol 8:109

    Article  PubMed  Google Scholar 

  6. Bettini S (1978) Arthropod venoms, Chap 25. Springer-Verlag, New York, pp 801–869

    Google Scholar 

  7. Bot ANM, Currie CR, Hart AG, Boomsma JJ (2001) Waste management in leafcutting ants. Ethol Ecol Evol 3:225–237

    Article  Google Scholar 

  8. Cafaro MJ, Currie CR (2005) Phylogenetic analysis of mutualistic filamentous bacteria associated with fungus-growing ants. Can J Microbiol 51:441–446

    Article  PubMed  CAS  Google Scholar 

  9. Cafaro M, Poulsen M, Little AEF, Gerardo NM, Price S, Wong B, Stuart AE, Larget B, Abbot P, Currie CR (2011) Specificity in the symbiotic association between fungus-growing ants and protective Pseudonocardia bacteria. Proc R Soc B. doi:10.1098/rspb.2010.2118

  10. Cherret JM (1986) History of the leaf-cutting ant problem. In: Lofgren CS, Vander Meer RK (eds) Fire ants and leaf-cutting ants: biology and management. Westview Press, Boulder, pp 10–17

    Google Scholar 

  11. Cherret JM (1986) The economic importance and control of leaf-cutting ants. In: Vinson SB (ed) Economic impact and control of social insects. Praeger, New York, pp 165–192

    Google Scholar 

  12. Cortez Madrigal H (2007) Producción de Lecanicillium (=Verticillium) lecanii en diferentes sustratos y patogenicidad. Agr Tec Mex 33:83–87

    Google Scholar 

  13. Currie CR (2001) Prevalence and impact of a virulent parasite on a tripartite mutualism. Oecologia 128:99–106

    Article  Google Scholar 

  14. Currie CR, Stuart AE (2001) Weeding and grooming of pathogens in agriculture by ants. Proc R Soc Lond B 268:1033–1039

    Article  CAS  Google Scholar 

  15. Currie CR, Mueller UG, Malloch D (1999) The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci USA 96:7998–8002

    Article  PubMed  CAS  Google Scholar 

  16. Currie CR, Scott JA, Summerbell RA, Malloch D (1999) Fungus growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–704

    Article  CAS  Google Scholar 

  17. Currie CR, Wong B, Stuart AE, Schultz TR, Rehner SA, Mueller UG, Sung GH, Spatafora JF, Straus NA (2003) Ancient tripartite coevolution in the attine ant–microbe symbiosis. Science 299:386–388

    Article  PubMed  CAS  Google Scholar 

  18. Currie CR, Bot ANM, Boomsma JJ (2003) Experimental evidence of a tripartite mutualism: bacteria protect ant fungal gardens from specialized parasites. Oikos 101:91–102

    Article  Google Scholar 

  19. Della Lucia TMC (1993) As formigas cortadeiras. Universidade Federal de Viçosa, Mina Gerais, Brazil

    Google Scholar 

  20. Della Lucia TMC, Vilela EF (1993) Métodos atuais de controle e perspectivas. In: Della Lucia TMC (ed) As formigas cortadeiras. Universidade Federal de Viçosa, Mina Gerais, Brazil, pp 163–190

    Google Scholar 

  21. Elizalde E, Folgarait PJ (2010) Host diversity and environmental variables as determinants of the species richness of the parasitoids of leaf-cutting ants. J Biogeogr 37:2305–2316

    Article  Google Scholar 

  22. Fernández-Marín H, Zimmerman JK, Nash DR, Boomsma JJ, Wcislo WT (2009) Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants. Proc R Soc B 276:2263–2269

    Article  PubMed  Google Scholar 

  23. Foguelman D (ed) (2003) Plagas y Enfermedades en Manejo Orgánico: Una Mirada Latinoamericana. IFOAM, Alemania

  24. Follett PA, Duan JJ (1999) Non-target effects of biological control. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  25. Forest Stewardship Council (2007) FSC Guidance Document. FSC pesticides policy: guidance on implementation. Forest Stewardship Council A.C., Bonn, Germany

  26. Ganassi S, Grazioso P, Moretti A, Sabatini MA (2010) Effects of the fungus Lecanicillium lecanii on survival and reproduction of the aphid Schizaphis graminum. Biocontrol 55:299–312

    Article  Google Scholar 

  27. Hajek AE, Goettel MS (2007) Guidelines for evaluating effects of entomopathogens on non-target organisms. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Springer, Dordrecht, pp 815–834

    Google Scholar 

  28. Hall RA (1981) The fungus Verticillium lecanii as a microbial insecticide against aphids and scales. In: Burges HD (ed) Microbial control of pests and plants disease. Academic Press, New York, pp 483–498

    Google Scholar 

  29. Header SR, Wirth R, Hertz H, Spiteller D (2009) Candicin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci USA 106:4742–4746

    Article  Google Scholar 

  30. Hokkanen HMT, Zeng QQ, Menzler-Hokkanen I (2003) Environmental impacts of microbial insecticides. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  31. Hughes WOH, Boomsma JJ (2004) Let your enemy do the work: within-host interactions between two fungal parasites of leaf-cutting ants. Proc R Soc B 271:S104–S106

    Article  PubMed  Google Scholar 

  32. Kost C, Lakatos T, Bottcher I, Arendholz WR, Redenbach M, Wirth R (2007) Non-specific association between filamentous bacteria and fungus-growing ants. Naturwissenschaften 94:821–828

    Article  PubMed  CAS  Google Scholar 

  33. Lima PP (1992) Palestra sobre formigas cortadeiras. Memoria de Reuniao de Especialistas en Controle Alternativo de Cupins e Formigas. Ibama, Brasil

    Google Scholar 

  34. Little AEF, Murakami T, Mueller UG, Currie CR (2006) Defending against parasites: fungus-growing ants combine specialized behaviours and microbial symbionts to protect their fungus gardens. Proc R Soc Biol Lett 2:12–16

    Google Scholar 

  35. Lopez E, Orduz S (2003) Metarhizium anisopliae and Trichoderma viride for control of nests of the fungus-growing ant, Atta cephalotes. Biol Control 27:194–200

    Article  Google Scholar 

  36. Mueller UG, Dash D, Rabeling C, Rodrigues A (2008) Coevolution between attine ants and actinomycete bacteria: a reevaluation. Evolution 62:2894–2912

    Article  PubMed  CAS  Google Scholar 

  37. Oh DC, Poulsen M, Currie CR, Clardy J (2009) Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat Chem Biol 5:391–393

    Article  PubMed  CAS  Google Scholar 

  38. Ortiz A, Orduz S (2000) In vitro evaluation of Trichoderma and Gliocladium antagonism against symbiotic fungus of the leaf-cutting ant Atta cephalotes. Mycopathologia 150:53–60

    Article  Google Scholar 

  39. Pimentel D, McLaughlin L, Zepp A, Lakitan B, Kraus T, Kleinman P, Vancini F, John Roach W, Graap E, Keeton WS, Selig G (1991) Environmental and economic effects of reducing pesticide use. Bioscience 41:402–409

    Article  Google Scholar 

  40. Poulsen M, Currie CR (2006) Complexity of insect-fungal associations: exploring the influence of microorganisms on attine ant-fungus symbiosis. In: Bourtzis K, Miller T (eds) Insect symbiosis, vol 2. CRC Press, Boca Raton

    Google Scholar 

  41. Poulsen M, Cafaro MJ, Erhardt D, Little AEF, Gerardo NM, Tebbets B, Klein B, Currie CR (2010) Variation in Pseudonocardia antibiotic defense helps govern parasite-induced morbidity in Acromyrmex leaf-cutting ants. Environ Microbiol Rep 2:534–540

    Article  CAS  Google Scholar 

  42. Read AF, Taylor LH (2001) The ecology of genetically diverse infections. Science 292:1099–1102

    Article  PubMed  CAS  Google Scholar 

  43. Reynolds HT, Currie CH (2004) Pathogenicity of Escovopsis weberi: the parasite of the attine ant-microbe symbiosis directly consumes the ant-cultivated fungus. Mycologia 96:955–959

    Article  PubMed  Google Scholar 

  44. Siegel S (1976) Estadística no paramétrica aplicada a las ciencias de la conducta. México, Trillas

    Google Scholar 

  45. Taerum SJ, Cafaro MJ, Little AEF, Schultz TR, Currie CR (2007) Low host-pathogen specificity in the leaf-cutting ant-microbe symbiosis. Proc R Soc B 274:1971–1978

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank U. G. Mueller for molecular identification of Leucoagaricus and Lecanicillium lecanii, and Ariel Marfetán, Deborah Colman, and Gabriel Maceiras for their laboratory assistance. An anonymous reviewer, the associate editor Dr. Matías Cafaro, and Johanna Gelderman provided important editorial corrections. We are indebted to the Capovilla family who allowed us to sample on their property. This work was financed by the Agencia Nacional de Promoción Científica y Técnica, Argentina, PICT 20924 to PJF. P. Folgarait thanks CONICET and Universidad Nacional de Quilmes for continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Folgarait.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folgarait, P., Gorosito, N., Poulsen, M. et al. Preliminary In Vitro Insights into the Use of Natural Fungal Pathogens of Leaf-cutting Ants as Biocontrol Agents. Curr Microbiol 63, 250–258 (2011). https://doi.org/10.1007/s00284-011-9944-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9944-y

Keywords

Navigation