Current Microbiology

, Volume 62, Issue 5, pp 1581–1589 | Cite as

Mycobacterium tuberculosis Expresses ftsE Gene Through Multiple Transcripts

  • Sougata Roy
  • Srinivasan Vijay
  • Muthu Arumugam
  • Deepak Anand
  • Mushtaq Mir
  • Parthasarathi Ajitkumar
Article

Abstract

Bacterial FtsE gene codes for the ATP-binding protein, FtsE, which in complex with the transmembrane protein, FtsX, participates in diverse cellular processes. Therefore, regulated expression of FtsE and FtsX might be critical to the human pathogen, Mycobacterium tuberculosis, under stress conditions. Although ftsX gene of M. tuberculosis (MtftsX) is known to be transcribed from a promoter inside the upstream gene, ftsE, the transcriptional status of ftsE gene of M. tuberculosis (MtftsE) remains unknown. Therefore, the authors initiated transcriptional analyses of MtftsE, using total RNA from M. tuberculosis cells that were grown under stress conditions, which the pathogen is exposed to, in granuloma in tuberculosis patients. Primer extension experiments showed the presence of putative transcripts, T1, T2, T3, and T4. T1 originated from the intergenic region between the upstream gene, MRA_3135, and MtftsE. T2 and T3 were found initiated from within MRA_3135. T4 was transcribed from a region upstream of MRA_3135. RT-PCR confirmed co-transcription of MRA_3135 and MtftsE. The cloned putative promoter regions for T1, T2, and T3 elicited transcriptional activity in Mycobacterium smegmatis transformants. T1, T2, and T3, but no new transcript, were present in the M. tuberculosis cells that were grown under the stress conditions, which the pathogen is exposed to in granuloma in tuberculosis patients. It showed lack of modulation of MtftsE transcripts under the stress conditions tested, indicating that ftsE may not have a stress response-specific function in M. tuberculosis.

References

  1. 1.
    Aramaki H, Sagara Y, Fujita M (1999) Cloning and sequencing of rpoH and identification of ftsE-ftsX in Pseudomonas putida PpGl. DNA Res 6:241–245CrossRefPubMedGoogle Scholar
  2. 2.
    Bellefontaine AF, Pierreux CE, Mertens P, Vandenhaute J, Letesson JJ, De Bolle X (2002) Plasticity of a transcriptional regulation network among alpha-proteobacteria is supported by the identification of CtrA targets in Brucella abortus. Mol Microbiol 43:945–960CrossRefPubMedGoogle Scholar
  3. 3.
    Bernatchez S, Francis FM, Salimnia H, Beveridge TJ, Li H, Dillon J-AR (2000) Genomic, transcriptional and phenotypic analysis of ftsE and ftsX of Neisseria gonorrhoeae. DNA Res 7:75–81PubMedGoogle Scholar
  4. 4.
    Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717–731CrossRefPubMedGoogle Scholar
  5. 5.
    Braibant M, Gilot P, Content J (2000) The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol Rev 24:449–467CrossRefPubMedGoogle Scholar
  6. 6.
    de Leeuw E, Graham B, Phillips GJ, Ten Hagen-Jongman CM, Oudega B, Luirink J (1999) Molecular characterisation of Escherichia coli FtsE and FtsX. Mol Microbiol 31:983–993CrossRefPubMedGoogle Scholar
  7. 7.
    Desjardin LE, Hayes LG, Sohaskey CD, Wayne LG, Eisenach KD (2001) Microaerophilic induction of the alpha-crystallin chaperone protein homologue (hspX) mRNA of Mycobacterium tuberculosis. J Bacteriol 183:5311–5316CrossRefPubMedGoogle Scholar
  8. 8.
    Doukhan L, Predich M, Nair G, Dussurget O, Mandic-Mulec I, Cole ST, Smith DR, Smith I (1995) Genomic organisation of the mycobacterial sigma gene cluster. Gene 165:67–70CrossRefPubMedGoogle Scholar
  9. 9.
    Fujiwara K, Taguchi H (2007) Filamentous morphology in GroE-depleted Escherichia coli induced by impaired folding of FtsE. J Bacteriol 189:5860–5866CrossRefPubMedGoogle Scholar
  10. 10.
    Garti-Levi S, Hazan R, Kain J, Fujita M, Ben-Yehuda S (2008) The FtsEX ABC transporter directs cellular differentiation in Bacillus subtilis. Mol Microbiol 69:1018–1028CrossRefPubMedGoogle Scholar
  11. 11.
    Gill DR, Salmond GP (1987) The Escherichia coli cell division proteins FtsY, FtsE and FtsX are inner membrane-associated. Mol Gen Genet 210:504–508CrossRefPubMedGoogle Scholar
  12. 12.
    Gill DR, Salmond GP (1990) The identification of the Escherichia coli ftsY gene product: an unusual protein. Mol Microbiol 4:575–583CrossRefPubMedGoogle Scholar
  13. 13.
    Gill DR, Hatfull GF, Salmond GP (1986) A new cell division operon in Escherichia coli. Mol Gen Genet 205:134–145CrossRefPubMedGoogle Scholar
  14. 14.
    Gordillo S, Guirado E, Gil O, Dıaz J, Amat I, Molinos S, Vilaplana C, Ausina V, Cardona P-J (2006) Usefulness of acr expression for monitoring latent Mycobacterium tuberculosis bacilli in ‘In Vitro’ and ‘In Vivo’ experimental models. Scand J Immunol 64:30–39CrossRefPubMedGoogle Scholar
  15. 15.
    Hampshire T, Soneji S, Bacon J, James BW, Hinds J, Laing K, Stabler RA, Marsh PD, Butcher PD (2004) Stationary phase gene expression of Mycobacterium tuberculosis following a progressive nutrient depletion: a model for persistent organisms? Tuberculosis (Edinb) 84:228–238CrossRefGoogle Scholar
  16. 16.
    Hu Y, Coates ARM (1999) Transcription of two sigma 70 homologue genes, sigA and sigB, in stationary phase Mycobacterium tuberculosis. J Bacteriol 181:469–476PubMedGoogle Scholar
  17. 17.
    Hu Y, Coates ARM (1999) Transcription of the stationary-phase-associated hspX gene of Mycobacterium tuberculosis is inversely related to synthesis of the 16-kilodalton protein. J Bacteriol 18:1380–1387Google Scholar
  18. 18.
    Lang E, Haugen K, Fleckenstein B, Homberset H, Frye SA, Ambur OH, Tønjum T (2009) Identification of Neisserial DNA binding components. Microbiology 155:852–862CrossRefPubMedGoogle Scholar
  19. 19.
    Manganelli R, Dubnau E, Tyagi S, Kramer FR, Smith I (1999) Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol Microbiol 31:715–724CrossRefPubMedGoogle Scholar
  20. 20.
    Manganelli R, Proveddi R, Rodrigue S, Beaucher J, Gaudreau L, Smith I (2004) σ Factors and global gene regulation in Mycobacterium tuberculosis. J Bacteriol 186:895–902CrossRefPubMedGoogle Scholar
  21. 21.
    Merino S, Altarriba M, Gavin R, Izquierdo L, Tomas JM (2001) The cell division genes (ftsE and ftsX) of Aeromonas hydrophila and their relationship with opsonophagocytosis. FEMS Microbiol Lett 198:183–188CrossRefPubMedGoogle Scholar
  22. 22.
    Mir MA, Rajeswari HS, Veeraraghavan U, Ajitkumar P (2006) Molecular characterisation of ABC transporter type FtsE and FtsX proteins of Mycobacterium tuberculosis. Arch Microbiol 185:147–158CrossRefPubMedGoogle Scholar
  23. 23.
    Miyagishima S, Wolk CP, Osteryoung KW (2005) Identification of cyanobacterial cell division genes by comparative and mutational analyses. Mol Microbiol 56:126–143CrossRefPubMedGoogle Scholar
  24. 24.
    O’Reilly EK, Kreuzer KN (2004) Isolation of SOS constitutive mutants of Escherichia coli. J Bacteriol 186:7149–7160CrossRefPubMedGoogle Scholar
  25. 25.
    Purkayastha A, McCue LA, McDonough KA (2002) Identification of a Mycobacterium tuberculosis putative classical nitroreductase gene whose expression is coregulated with that of the acr gene within macrophages, in standing versus shaking cultures, and under low oxygen conditions. Infect Immun 70:1518–1529CrossRefPubMedGoogle Scholar
  26. 26.
    Radmacher E, Stansen KC, Besra GS, Alderwick LJ, Maughan WN, Hollweg G, Sahm H, Wendisch VF, Eggeling L (2005) Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits l-glutamate efflux of Corynebacterium glutamicum. Microbiology 151:1359–1368CrossRefPubMedGoogle Scholar
  27. 27.
    Ramirez-Arcos S, Salimnia H, Bergevin I, Paradis M, Dillon J-AR (2001) Expression of Neisseria gonorrhoeae cell division genes ftsZ, ftsE and minD is influenced by environmental conditions. Res Microbiol 152:781–791CrossRefPubMedGoogle Scholar
  28. 28.
    Rand L, Hinds J, Springer B, Sander P, Buxton RS, Davis EO (2003) The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA. Mol Microbiol 50:1031–1042CrossRefPubMedGoogle Scholar
  29. 29.
    Reddy M (2007) Role of FtsEX in cell division of Escherichia coli: viability of ftsEX mutants is dependent on functional SufI or high osmotic strength. J Bacteriol 189:98–108CrossRefPubMedGoogle Scholar
  30. 30.
    Rodrigue S, Provvedi R, Jacques P-E, Gaudreau L, Manganelli R (2006) The σ factors of Mycobacterium tuberculosis. FEMS Microbiol Rev 30:926–941CrossRefPubMedGoogle Scholar
  31. 31.
    Rodrigue S, Brodeur J, Jacques PE, Gervais AL, Brzezinski R, Gaudreau L (2007) Identification of mycobacterial sigma factor binding sites by chromatin immunoprecipitation assays. J Bacteriol 189:1505–1513CrossRefPubMedGoogle Scholar
  32. 32.
    Roy S, Ajitkumar P (2005) Transcriptional analysis of the principal cell division gene, ftsZ, of Mycobacterium tuberculosis. J Bacteriol 187:2540–2550CrossRefPubMedGoogle Scholar
  33. 33.
    Roy S, Mir MA, Anand SP, Niederweis M, Ajitkumar P (2004) Identification and semi-quantitative analysis of Mycobacterium tuberculosis H37Rv ftsZ gene-specific promoter activity-containing regions. Res Microbiol 155:817–826CrossRefPubMedGoogle Scholar
  34. 34.
    Sachdeva P, Misra R, Tyagi AK, Singh Y (2010) The sigma factors of Mycobacterium tuberculosis: regulation of the regulators. FEBS J 277:605–626CrossRefPubMedGoogle Scholar
  35. 35.
    Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84CrossRefPubMedGoogle Scholar
  36. 36.
    Schmidt KL, Peterson ND, Kustusch RJ, Wissel MC, Graham B, Phillips GJ, Weiss DS (2004) A predicted ABC transporter, FtsEX, is needed for cell division in Escherichia coli. J Bacteriol 186:785–793CrossRefPubMedGoogle Scholar
  37. 37.
    Scholz O, Thiel A, Hillen W, Niederweis M (2000) Quantitative analysis of gene expression with an improved green fluorescent protein. Eur J Biochem 267:1565–1570CrossRefPubMedGoogle Scholar
  38. 38.
    Sherman DR, Voskuil M, Schnappinger D, Liao R, Harrell MI, Schoolnik GK (2001) Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin. Proc Natl Acad Sci USA 98:7534–7539CrossRefPubMedGoogle Scholar
  39. 39.
    Smeulders MJ, Keer J, Speight RA, Williams HD (1999) Adaptation of Mycobacterium smegmatis to stationary phase. J Bacteriol 181:270–283PubMedGoogle Scholar
  40. 40.
    Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR Jr (1990) Isolation and characterisation of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 4:1911–1919CrossRefPubMedGoogle Scholar
  41. 41.
    Steinhauer K, Eschenbacher I, Radischat N, Detsch C, Niederweis M, Goroncy-Bermes P (2010) Rapid evaluation of the mycobactericidal efficacy of disinfectants in the quantitative carrier test EN 14563 by using fluorescent Mycobacterium terrae. Appl Environ Microbiol 76:546–554CrossRefPubMedGoogle Scholar
  42. 42.
    Tyagi JS, Das TK, Kinger AK (1996) An M. tuberculosis DNA fragment contains genes encoding cell division proteins ftsX and ftsE, a basic protein and homologues of PemK and small protein B. Gene 177:59–67CrossRefPubMedGoogle Scholar
  43. 43.
    Ukai H, Matsuzawa H, Ito K, Yamada M, Nishimura A (1998) ftsE(Ts) affects translocation of K + -pump proteins into the cytoplasmic membrane of Escherichia coli. J Bacteriol 180:3663–3670PubMedGoogle Scholar
  44. 44.
    Vallecillo AJ, Espitia C (2009) Expression of Mycobacterium tuberculosis pe_pgrs33 is repressed during stationary phase and stress conditions, and its transcription is mediated by sigma factor A. Microb Pathog 46:119–127CrossRefPubMedGoogle Scholar
  45. 45.
    Voskuil MI, Visconti KC, Schoolnik GK (2004) Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis (Edinb) 84:218–227CrossRefGoogle Scholar
  46. 46.
    Wayne LG, Hayes LG (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64:2062–2069PubMedGoogle Scholar
  47. 47.
    Wayne LG, Sohaskey CD (2001) Nonreplicating persistence of Mycobacterium tuberculosis. Annu Rev Microbiol 55:139–163CrossRefPubMedGoogle Scholar
  48. 48.
    Wu QL, Kong D, Lam K, Husson RN (1997) A mycobacterial extracytoplasmic function sigma factor involved in survival following stress. J Bacteriol 179:2922–2929PubMedGoogle Scholar
  49. 49.
    Wu S, Barnes PF, Samten B, Pang X, Rodrigue S, Ghanny S, Soteropoulos P, Gaudreau L, Howard ST (2009) Activation of the eis gene in a W-Beijing strain of Mycobacterium tuberculosis correlates with increased SigA levels and enhanced intracellular growth. Microbiology 155:1272–1281CrossRefPubMedGoogle Scholar
  50. 50.
    Yuan Y, Crane DD, Barry CE III (1996) Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial alpha-crystallin homolog. J Bacteriol 178:4484–4492PubMedGoogle Scholar
  51. 51.
    Zheng H, Lu L, Wang B, Pu S, Zhang X, Zhu G, Shi W, Zhang L, Wang H, Wang S, Zhao G, Zhang Y (2008) Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS ONE 3:E2375CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sougata Roy
    • 1
    • 2
  • Srinivasan Vijay
    • 1
  • Muthu Arumugam
    • 1
  • Deepak Anand
    • 1
  • Mushtaq Mir
    • 1
    • 3
  • Parthasarathi Ajitkumar
    • 1
  1. 1.Indian Institute of ScienceMicrobiology and Cell BiologyBangaloreKarnataka
  2. 2.Cardiovascular Research InstituteUniversity of California San FranciscoSan FranciscoUSA
  3. 3.Division of Infectious DiseasesHarvard Medical School, Children’s HospitalBostonUSA

Personalised recommendations