Skip to main content
Log in

Germinant Generation from δ-endotoxin of Bacillus thuringiensis Strain 1.1

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The novel finding of this study is that the δ-endotoxin present in the spore coat of Bacillus thuringiensis strain 1.1 (Bt1.1), plays a central role in spore germination by generation of germinant via its β-glucosidase activity and is based on the following: (i) the crystals of Bt1.1 consist of the 140 kDa δ-endotoxin which exhibits β-glucosidase enzymatic activity. Besides crystals, δ-endotoxin is also located in the spore coat and at this site displays β-glucosidase activity, resulting in glucose production; (ii) glucose is an efficient germinant of both Bt1.1 and acrystalliferous Bt4.1 strain; (iii) substrates of β-glucosidase can activate the germination of Bt1.1 spores, but not those of the acrystalliferous Bt4.1 sister strain that do not contain the 140 kDa δ-endotoxin; (iv) Reduction or enhancement of enzymatic activity of δ-endotoxin, results in retardation or acceleration of germination and outgrowth, respectively. Bt1.1 cells secrete a 60 kDa polypeptide which displays β-glucosidase activity as indicated by zymogram analysis and which is immunologically related to the 140 kDa δ-endotoxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Christie G, Lazarevska M, Lowe CR (2008) Functional consequences of amino acid substitutions to GerVB, a component of the Bacillus megaterium spore germinant receptor. J Bacteriol 190:2014–2022

    Article  PubMed  CAS  Google Scholar 

  2. Moir A, Corfe BM, Behravan J (2002) Spore germination. Cell Mol Life Sci 59:403–409

    Article  PubMed  CAS  Google Scholar 

  3. Boland FM, Atrich A, Chirakkal H, Foster SJ, Moir A (2000) Complete spore-cortex hydrolysis during germination of Bacillus subtilis 168 requires SleB and YpeB. Microbiology 146:57–64

    PubMed  CAS  Google Scholar 

  4. Chirakkal H, O’Rourke M, Abdelmadjid A, Foster SJ, Moir A (2002) Analysis of spore cortex lytic enzymes and related proteins in Bacillus subtilis endospore formation. Microbiology 148:2383–2392

    PubMed  CAS  Google Scholar 

  5. Agaisse H, Lereclus D (1995) How does Bacillus thuringiensis produce so much insectisidal crystal protein? J Bacteriol 177:6027–6032

    PubMed  CAS  Google Scholar 

  6. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    PubMed  CAS  Google Scholar 

  7. Crickmore N (2006) Beyond the spore-past and future developments of Bacillus thuringiensis as a biopesticide. J Appl Microbiol 101:616–619

    Article  PubMed  CAS  Google Scholar 

  8. Aronson AI, Tyrell DJ, Fitz-James PC, Bulla LA Jr (1982) Relationship of the synthesis of spore coat protein and parasporal crystal protein in Bacillus thuringiensis. J Bacteriol 151:399–410

    PubMed  CAS  Google Scholar 

  9. Du C, Nickerson KW (1996) Bacillus thuringiensis HD-73 spores have surface-localized Cry1Ac toxin: physiological and pathogenic consequences. Appl Environ Microbiol 62:3722–3726

    PubMed  CAS  Google Scholar 

  10. Kim H, Hahn M, Grabowski P, McPherson DC, Otte MM, Wang R, Ferguson CC, Eichenberger P, Driks A (2006) The Bacillus subtilis spore coat protein interaction network. Mol Microbiol 59:487–502

    Article  PubMed  CAS  Google Scholar 

  11. Ferguson CC, Camp AH, Losick R (2007) gerT, a newly discovered germination gene under the control of the sporulation transcription factor σK in Bacillus subtilis. J Bacteriol 189:7681–7689

    Article  PubMed  CAS  Google Scholar 

  12. Masayama A, Kuwana R, Takamatsu H, Hemmi H, Yoshimura T, Watabe K, Moriyama R (2007) A novel lipolytic enzyme, YcsK (LipC), located in the spore coat of Bacillus subtilis, is involved in spore germination. J Bacteriol 189:2369–2375

    Article  PubMed  CAS  Google Scholar 

  13. Ragkousi K, Eichenberger P, van Ooij C, Setlow P (2003) Identification of a new gene essential for germination of Bacillus subtilis spores with Ca2+-dipicolinate. J Bacteriol 185:2315–2329

    Article  PubMed  CAS  Google Scholar 

  14. Sivropoulou A, Haritidou L, Vasara E, Aptosoglou S, Koliais S (2000) Correlation of the insecticidal activity of the Bacillus thuringiensis A4 strain against Bactrocera oleae (Diptera) with the 140-kDa crystal polypeptide. Curr Microbiol 41:262–266

    PubMed  CAS  Google Scholar 

  15. Papalazaridou A, Charitidou L, Sivropoulou A (2003) β-glucosidase enzymatic activity of crystal polypeptide of the Bacillus thuringiensis strain 1.1. J Endotoxin Res 9:215–224

    PubMed  CAS  Google Scholar 

  16. Perez-Pons A, Cayetano A, Rebordosa X, Lioberas J, Guasch A, Querol E (1994) A β-glucosidase gene (bgl3) from Streptomyces sp. strain QM-B814. Molecular cloning, nucleotide sequence, purification and characterization of the encoded enzyme, a new member of family 1 glycosyl hydrolases. Eur J Biochem 223:557–565

    Article  PubMed  CAS  Google Scholar 

  17. Kanda K, Yasuda Y, Tochikubo K (1988) Germination-initiating activities of Bacillus subtilis spores of analogues of l-alanine derived by modification at the amino or carboxyl group. J Gen Microbiol 10:2747–2755

    Google Scholar 

  18. Thibeault D, Lefebvre GM (1984) Triggering in unactivated Bacillus megaterium spores. Can J Microbiol 8:997–1000

    Article  Google Scholar 

  19. Paidhungat M, Setlow P (2001) Localization of a germinant receptor protein (GerBA) to the inner membrane of Bacillus subtilis spores. J Bacteriol 183:3982–3990

    Article  PubMed  CAS  Google Scholar 

  20. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  21. Blank A, Sugiyama RH, Dekker CA (1982) Activity staining of nucleolytic enzymes after sodium dodesyl sulphate-polyacrylamide gel electrophoresis: use of aqueous isopropanol to remove detergent from gels. Anal Biochem 120:267–275

    Article  PubMed  CAS  Google Scholar 

  22. Benoit TG, Newman KA, Wilson GR (1995) Correlation between alkaline activation of Bacillus thuringiensis var. kurstaki spores and crystal production. Curr Microbiol 31:301–303

    Article  CAS  Google Scholar 

  23. Chandrapati S, Woodson LP (2003) Inducible β-glucosidase synthesis during germination and outgrowth of Bacillus subtilis ATCC 9372 spores. Lett Appl Microbiol 36:15–19

    Article  PubMed  CAS  Google Scholar 

  24. Bobek J, Halada P, Angelis J, Vohradsky J, Mikulik K (2004) Activation and expression of proteins during synchronous germination of aerial spores of Streptomyces granaticolor. Proteomics 4:3864–3880

    Article  PubMed  CAS  Google Scholar 

  25. Albert H, Davies DJG, Woodson LP, Soper CJ (1998) Biological indicators for steam sterilization: characterization of a rapid biological indicator utilizing Bacillus stearothermophilus spore-associated alpha-glucosidase enzyme. J Appl Microbiol 85:865–874

    Article  PubMed  CAS  Google Scholar 

  26. Chaudhary K, Tauro P (1982) Sequential release of cellulose enzymes during germination of Trichoderma reesei spores. J Biosci 4:281–286

    Article  CAS  Google Scholar 

  27. Moriyama R, Fukuoka H, Miyata S, Kudoh S, Hattori A, Kozuka S, Yasuda Y, Tochikubo K, Makino S (1999) Expression of germination-specific amidase, SleB, of Bacilli in the forespore compartment of sporulating cells and its localization on the exterior side of the cortex in dormant spores. J Bacteriol 181:2373–2378

    PubMed  CAS  Google Scholar 

  28. Setlow P (2003) Spore germination. Curr Opin Microbiol 6:550–556

    Article  PubMed  CAS  Google Scholar 

  29. Kostichka K, Warren GW, Mullins M, Mullins AD, Craig JA, Koziel MG, Estruch JJ (1996) Cloning of a cryV-type insecticidal protein gene from Bacillus thuringiensis: the cryV-encoded protein is expressed early in stationary phase. J Bacteriol 178:2141–2144

    PubMed  CAS  Google Scholar 

  30. Masayama A, Kato S, Terashima T, Mølgaard A, Hemmi H, Yoshimura T, Moriyama R (2010) Bacillus subtilis spore coat protein LipC is a phospholipase B. Biosci Biotechnol Biochem 74:24–30

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afroditi Sivropoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papalazaridou, A., Kanata, Ε. & Sivropoulou, A. Germinant Generation from δ-endotoxin of Bacillus thuringiensis Strain 1.1. Curr Microbiol 62, 1431–1437 (2011). https://doi.org/10.1007/s00284-011-9878-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9878-4

Keywords

Navigation