Skip to main content
Log in

Inability of Some Aeromonas hydrophila Strains to Act as Recipients of Plasmid pRAS1 in Conjugal Transfer Experiments

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Plasmids belonging to the IncU incompatibility group are mobile genetic elements isolated frequently from Aeromonas spp. These plasmids share structural and functional characteristics and often carry Class-1 integrons bearing antibiotic resistance genes. In this work the ability of two IncU plasmids, pAr-32 and pRAS1 to establish in different A. hydrophila strains after conjugal transfer was studied. In vitro transfer frequencies on solid surface ranged from 10−1 to 10−6 for pAr-32 and from 10−3 to 10−5 for pRAS1. While carrying out these experiments we detected four strains unable to acquire plasmid pRAS1, indicating that the genetic background of recipients affects the establishment of the plasmid. We explored the possible reasons why these strains failed to yield transconjugants after mating experiments using A. salmonicida 718 as a donor. Factors included donor cell recognition, incompatibility, surface exclusion and restriction of incoming DNA. We found that none of these factors could explain the refractivity of non-receptive A. hydrophila strains to yield transconjugants. Although we do not know the reasons of this refractivity, we may speculate that these isolates lack a product necessary to replicate or stabilize plasmid pRAS1. Alternatively, these strains could contain a product that impedes plasmid establishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Llosa M, Gomis-Rüth FX, Coll M et al (2002) Bacterial conjugation: a two-step mechanism for DNA transport. Mol Microbiol 45:1–8

    Article  PubMed  CAS  Google Scholar 

  2. Heinemann JA, Sprage GF (1989) Bacterial conjugative plasmids mobilize DNA transfer between bacterial and yeast. Nature 340:205–209

    Article  PubMed  CAS  Google Scholar 

  3. Schmidt AS, Bruun MS, Larsen JL et al (2001) Characterization of class 1 integron associated with R-plasmid in clinical A. salmonicida isolates from various geographical areas. J Antimicrob Chemother 47:735–743

    Article  PubMed  CAS  Google Scholar 

  4. Sørum H, L’Abée-Lund TM, Solberg A et al (2003) Integron-containing IncU R-plasmid and pAr-32 from the fish pathogen A. salmonicida. Antimicrob Agents Chemother 47:1285–1290

    Article  PubMed  Google Scholar 

  5. Bello-López JM, Fernández-Rendón E, Curiel-Quesada E (2010) In vivo transfer of plasmid pRAS1 between Aeromonas salmonicida and Aeromonas hydrophila in artificially infected Cyprinus carpio L. J Fish Dis 33:251–259

    Article  PubMed  Google Scholar 

  6. Pouch F, Ito K (2002) Compendium of methods for the microbiological examination of foods, 3rd edn. American Public Health Association, Washington DC

    Google Scholar 

  7. Figueras MJ, Soler L, Chacón MR et al (2000) Extended method for discrimination of Aeromonas spp. by 16S rDNA RFLP analysis. Int J Syst Evol Microbiol 50:2069–2073

    Article  PubMed  CAS  Google Scholar 

  8. Soler L, Yáñez MA, Chacon MR, Aguilera-Arreola MG et al (2004) Phylogenetic analysis of the genus Aeromonas based on two housekeeping genes. Int J Syst Evol Microbiol 54:1511–1519

    Article  PubMed  CAS  Google Scholar 

  9. National Committee for Clinical Laboratory Standards (2002) Performance standards for antimicrobial susceptibility testing. XII Informational supplement. M100-S12. NCCLS, Wayne

    Google Scholar 

  10. Schmidt AS, Bruun MS, Dalsgaard I et al (2001) Incidence, distribution and spread of tetracycline resistance determinants and integron-associated antibiotic resistance genes among motile aeromonads from a fish farming environment. Appl Environ Microbiol 67:5675–5682

    Article  PubMed  CAS  Google Scholar 

  11. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Laboratory Press, New York

    Google Scholar 

  12. Zhang H, Shi L, Li L et al (2004) Identification and characterization of class 1 integron resistance gene cassettes among Salmonella strains isolated from healthy humans in China. Microbiol Immunol 48:639–645

    PubMed  CAS  Google Scholar 

  13. Cattoir V, Poirel L, Aubert C et al (2008) Unexpected occurrence of plasmid-mediated quinolone resistance determinants in environmental Aeromonas spp. Emerg Infect Dis 14:231–237

    Article  PubMed  CAS  Google Scholar 

  14. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  PubMed  CAS  Google Scholar 

  15. Pinedo CA, Smets BF (2005) Conjugal TOL transfer from Pseudomonas putida to Pseudomonas aeruginosa: effects of restriction proficiency, toxicant exposure, cell density ratios and conjugation detection method on observed transfer efficiencies. Appl Environ Microbiol 71:51–57

    Article  PubMed  CAS  Google Scholar 

  16. Winson MK, Simon S, Philip JH et al (1998) Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol Lett 163:193–202

    Article  PubMed  CAS  Google Scholar 

  17. Mendoza-Medellín A, Curiel-Quesada E, Camacho-Carranza R (2004) Escherichia coli R-factors unstable in Salmonella typhi are deleted before being segregated in this host. Plasmid 51:75–86

    Article  PubMed  Google Scholar 

  18. Fengqing H, Song Y (2005) Electroporation-mediated transformation of Aeromonas hydrophila. Plasmid 54:283–287

    Article  PubMed  Google Scholar 

  19. De Gelder L, Vandecasteele FP, Brown CJ et al (2005) Plasmid donor affects host range of promiscuous IncP-1beta plasmid pB10 in an activated-sludge microbial community. Appl Environ Microbiol 71:5309–5317

    Article  PubMed  Google Scholar 

  20. Pérez-Mendoza D, de la Cruz F (2009) Escherichia coli genes affecting recipient ability in plasmid conjugation: are there any? BMC Genomics 10:71

    Article  PubMed  Google Scholar 

  21. Dahlberg C, Bergstrom M, Andreasen M et al (1998) Interspecies bacterial conjugation by plasmids from marine environments visualized by gfp expression. Mol Biol Evol 15:385–390

    CAS  Google Scholar 

  22. Lotareva OV, Poluektova EU, Fedorina EA et al (2003) Inter- and intraspecies conjugal transfer of different plasmids in bacilli. Genetika 39:1141–1144

    PubMed  CAS  Google Scholar 

  23. Sandaa RA, Enger Ø (1996) High frequency transfer of a broad host range plasmid present in an atypical strain of the fish pathogen A. salmonicida. Dis Aquat Org 24:71–75

    Article  Google Scholar 

  24. Thomas M, Nielsen M (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721

    Article  PubMed  CAS  Google Scholar 

  25. Stein D, Gregoire S, Piekarowicz A (1988) Restriction of plasmid DNA during transformation but not conjugation in Neisseria gonorrhoeae. Infect Immun 56:112–116

    PubMed  CAS  Google Scholar 

  26. Elhai J, Vepritskiy A, Muro A et al (1997) Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. J Bacteriol 179:1998–2005

    PubMed  CAS  Google Scholar 

  27. Schafer A, Kalinowki J, Puhler A (1993) Increased fertility of Corinebacterium glutamicum recipients in intergeneric matings with Escherichia coli after stress exposure. Appl Environ Microbiol 60:756–759

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by grant CGPI-IPN 20101081. JMBL was awarded a CONACyT fellowship. Everardo Curiel-Quesada and Elizabeth Fernández-Rendón are COFAA fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Everardo Curiel-Quesada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bello-López, J.M., Vázquez-Ocampo, N.J., Fernández-Rendón, E. et al. Inability of Some Aeromonas hydrophila Strains to Act as Recipients of Plasmid pRAS1 in Conjugal Transfer Experiments. Curr Microbiol 64, 332–337 (2012). https://doi.org/10.1007/s00284-011-0076-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-0076-1

Keywords

Navigation