Skip to main content
Log in

The Sulfur Oxidation Operon Repressor Function is Influenced by the Product of its Adjacent Upstream ORF in Pseudaminobacter salicylatoxidans KCT001

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The repressor of sulfur-oxidizing (sox) operon regulates expression of genes encoding a multienzyme complex that governs the chemolithotrophic sulfur oxidation in Pseudaminobacter salycylatoxidans KCT001. The inducer of sox operon viz., thiosulfate and other sulfur anions had no impact on in vitro repressor–operator interaction which indicates an atypical derepression mechanism. The reduced repressor has higher affinity for its operator DNA. The sulfur oxidation repressor binds with operator regions and led to efficient repression in trans, however, increased repressor concentration resulted in higher gene expression. Using a reporter system in E. coli, the present study established that the thioredoxin-like protein, encoded in immediate upstream ORF, could nullify the observed reversal of the repression at higher repressor concentration. In this context, the involvement of the upstream gene product in the regulation of the sulfur oxidation gene expression has been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Appia-Ayme C, Berks BC (2002) SoxV, an orthologue of the CcdA disulfide transporter, is involved in thiosulfate oxidation in Rhodovulum sulfidophilum and reduces the periplasmic thioredoxin SoxW. Biochem Biophys Res Commun 296:737–741

    Article  PubMed  CAS  Google Scholar 

  2. Appia-Ayme C, Little PJ, Matsumoto Y, Leech AP, Berks BC (2001) Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum. J Bacteriol 183:6107–6118

    Article  PubMed  CAS  Google Scholar 

  3. Bardischewsky F, Fischer J, Holler B, Friedrich CG (2006) SoxV transfers electrons to the periplasm of Paracoccus pantotrophus—an essential reaction for chemotrophic sulfur oxidation. Microbiology 152:465–472

    Article  PubMed  CAS  Google Scholar 

  4. Bardischewsky F, Friedrich CG (2001) The shxVW locus is essential for oxidation of inorganic sulfur and molecular hydrogen by Paracoccus pantotrophus GB17: a novel function for lithotrophy. FEMS Microbiol Lett 202:215–220

    Article  PubMed  CAS  Google Scholar 

  5. Bullock WO, Fernandez JM, Short JM (1987) XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strains with beta-gatactosidase selection. Bio Techniques 5:376–378

    CAS  Google Scholar 

  6. Carius Y, Rother D, Friedrich CG, Scheidig AJ (2009) The structure of the periplasmic thiol-disulfide oxidoreductase from Paracoccus pantotrophus indicates a triple Trx/Grx/DsbC functionality in chemotrophic sulfur oxidation. Acta Cryst D65:229–240

    CAS  Google Scholar 

  7. Friedrich CG (1998) Physiology and genetics of sulfur-oxidizing bacteria. Adv Microb Physiol 39:235–289

    Article  PubMed  CAS  Google Scholar 

  8. Friedrich CG, Quentmeier A, Bardischewsky F, Rother D, Kraft R, Kostka S, Prinz H (2000) Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J Bacteriol 182:4677–4687

    Article  PubMed  CAS  Google Scholar 

  9. Jain S, Kaushal D, Dasgupta SK, Tyagi AK (1997) Construction of shuttle vectors for genetic manipulation and molecular analysis of mycobacteria. Gene 190:37–44

    Article  PubMed  CAS  Google Scholar 

  10. Kelly DP (1989) Physiology and biochemistry of unicellular sulfur bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic Bacteria. Springer, Berlin Science Tech Publishers, Madison, pp 193–217

    Google Scholar 

  11. Lahiri C, Mandal S, Ghosh W, Dam B, Roy P (2006) A novel gene cluster soxSRT is essential for the chemolithotrophic oxidation of thiosulfate and tetrathionate by Pseudaminobacter salicylatoxidans KCT001. Curr Microbiol 54:267–273

    Article  Google Scholar 

  12. Mandal S, Chatterjee S, Dam B, Roy P, Das Gupta SK (2007) The dimeric repressor SoxR binds cooperatively to the promoter(s) regulating expression of the sulfur oxidation (sox) operon of Pseudaminobacter salicylatoxidans KCT001. Microbiology 153:80–91

    Article  PubMed  CAS  Google Scholar 

  13. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 352–355, 403, 404

  14. Mukhopadhyaya PN, Deb C, Lahiri C, Roy P (2000) A soxA gene, encoding a diheme cytochrome c, and a sox locus, essential for sulfur oxidation in a new sulfur lithotrophic bacterium. J Bacteriol 182:4278–4287

    Article  PubMed  CAS  Google Scholar 

  15. Orawski G, Bardischewsky F, Quentmeier A, Rother D, Friedrich CG (2007) The periplasmic thioredoxin SoxS plays a key role in activation in vivo of chemotrophic sulfur oxidation of Paracoccus pantotrophus. Microbiology 153:1081–1086

    Article  PubMed  CAS  Google Scholar 

  16. Pomposiello PJ, Demple B (2001) Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol 19:109–114

    Article  PubMed  CAS  Google Scholar 

  17. Rother D, Henrich HJ, Quentmeier A, Bardischewsky F, Friedrich CG (2001) Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in Paracoccus pantotrophus GB17. J Bacteriol 183:4499–4508

    Article  PubMed  CAS  Google Scholar 

  18. Rother D, Orawski G, Bardischewsky F, Friedrich CG (2005) SoxRS-mediated regulation of chemolithotrophic sulfur oxidation in Paracoccus pantotrophus. Microbiology 151:1707–1716

    Article  PubMed  CAS  Google Scholar 

  19. Rother D, Ringk J, Friedrich CG (2008) Sulfur oxidation of Paracoccus pantotrophus: the sulfur binding protein SoxYZ is the target of the periplasmic thiol-disulfide oxidoreductase SoxS. Microbiol 154:1980–1988

    Article  CAS  Google Scholar 

  20. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

Download references

Acknowledgments

SM is grateful to CSIR for his fellowship. Author is thankful to Dr. Sujoy K Dasgupta and Dr. Wriddhiman Ghosh for their valuable comments and constant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhendu Mandal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, S. The Sulfur Oxidation Operon Repressor Function is Influenced by the Product of its Adjacent Upstream ORF in Pseudaminobacter salicylatoxidans KCT001. Curr Microbiol 64, 259–264 (2012). https://doi.org/10.1007/s00284-011-0063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-0063-6

Keywords