Skip to main content
Log in

Coexisting Curtobacterium Bacterium Promotes Growth of White-Rot Fungus Stereum sp.

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

White-rot basidiomycetes are the main decomposers of woody biomass in forest ecosystems. Little is known, however, about the interactions between white-rot fungi and other microorganisms in decayed wood. A wood-rotting fungus, Stereum sp. strain TN4F, was isolated from a fruit body, and its coexisting cultivable bacteria were isolated from its substrate; natural white-rot decayed wood. The effects of bacteria on fungal growth were examined by confrontational assay in vitro. A growth-promoting bacterium for this Stereum strain was identified as Curtobacterium sp. TN4W-19, using 16SrRNA sequencing. A confrontational assay revealed that Curtobacterium sp. TN4W-19 significantly promoted the mycelial growth of Stereum sp. TN4F in the direction of the bacterial colony, without direct contact between the mycelium and bacterial cells. This is the first report of a positive interaction between a white-rot fungus and a coexisting bacterial strain in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bending GD, Poole EJ, Whipps JM, Read DJ (2002) Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root–fungus interactions and plant growth. FEMS Microbiol Ecol 39:219–227

    PubMed  CAS  Google Scholar 

  2. Blanchette RA, Shaw CG (1978) Associations among bacteria, yeasts, and basidiomycetes during wood decay. Phytopathology 68:631–637

    Article  Google Scholar 

  3. Boddy L (2000) Interspecific combative interaction between wood-decaying basidiomycetes. FEMS Microbiol Ecol 31:185–194

    Article  PubMed  CAS  Google Scholar 

  4. Cespedes R, Salas L, Calderon I, Gonzales B, Vicuna R (1992) Microbial and biochemical-characterization of a bacterial consortium isolated from decaying wood by growth on a β-O-4 lignin-related dimeric compound. Arch Microbiol 158:162–170

    Article  CAS  Google Scholar 

  5. Clausen CA (1996) Bacterial association with decaying wood: a review. Int Biodeterior Biodegrad 37:101–107

    Article  Google Scholar 

  6. Deveau A, Brulé C, Palin B, Champmartin D, Rubini P, Garbaye J, Sarniguet A, Frey-Klett P (2010) Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N and the helper bacterium Pseudomonas fluorescens BBc6R8. Environ Microbiol Rep 2:560–568

    Article  CAS  Google Scholar 

  7. Folman LB, Klein Gunnewiek PJ, Boddy L, de Boer W (2008) Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. FEMS Microbiol Ecol 63:181–191

    Article  PubMed  CAS  Google Scholar 

  8. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  PubMed  CAS  Google Scholar 

  9. Hirai H, Kondo R, Sakai K (1994) Screening of lignin-degrading fungi and ligninolytic enzyme activities during biological breaching of kraft pulp. Mokuzai Gakkaishi 40:980–986

    CAS  Google Scholar 

  10. Hiraishi A (1992) Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15:210–213

    Article  PubMed  CAS  Google Scholar 

  11. Kamei I, Suhara H, Kondo R (2005) Phylogenetical approach to isolation of white-rot fungi capable of degrading polychlorinated dibenzo-p-dioxin. Appl Microbiol Biotechnol 69:358–366

    Article  PubMed  CAS  Google Scholar 

  12. Kamei I, Sonoki S, Haraguchi K, Kondo R (2006) Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus, Phlebia brevispora. Appl Microbiol Biotechnol 73:932–940

    Article  PubMed  CAS  Google Scholar 

  13. Kamei I, Takagi K, Kondo R (2011) Degradation of endosulfan and endosulfan sulfate by white-rot fungus Trametes hirsute. J Wood Sci 57:317–322

    Article  CAS  Google Scholar 

  14. Kataoka R, Futai K (2009) A new mycorrhizal helper bacterium, Ralstonia species, in the ectomycorrhizal symbiosis between Pinus thunbergii and Suillus granulatus. Biol Fertil Soils 45:315–320

    Article  Google Scholar 

  15. Kirk TK, Fenn P (1982) Formation and action of the ligninolytic system in basidiomycetes. In: Frankland JC, Hedger JN, Swift MJ (eds) Decomposer basidiomycetes: their biology and ecology. Cambridge University Press, New York, pp 67–90

    Google Scholar 

  16. Mikluscak M, Dawson-Andoh BE (2004) Microbial colonizer of freshly sawn yellow-poplar (Liriodendron tulipifera L.) lumber in two seasons: Part 2. Bacteria. Holzforschung 58:182–188

    Article  CAS  Google Scholar 

  17. Murray AC, Woodward S (2007) Temporal change in function diversity of culturable bacteria populations in Sitka spruce stumps. For Pathol 37:217–235

    Article  Google Scholar 

  18. Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris-Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743–751

    Article  Google Scholar 

  19. Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R (2010) Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int Biodeterior Biodegrad 64:397–402

    Article  CAS  Google Scholar 

  20. Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler H-P (2006) Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microbiol 72:3550–3557

    Article  PubMed  CAS  Google Scholar 

  21. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  22. Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216

    Article  PubMed  CAS  Google Scholar 

  23. Valaskova V, de Boer W, Gunnewiek PJ, Pospisek M, Baldrian P (2009) Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J 3:1221–1281

    Article  Google Scholar 

  24. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  25. Zhang HB, Yang MX, Tu R (2008) Unexpected high bacterial diversity in decaying wood of conifer as revealed by molecular method. Int Biodeterior Biodegrad 62:471–474

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (22580187 and 23688041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Kamei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamei, I., Yoshida, T., Enami, D. et al. Coexisting Curtobacterium Bacterium Promotes Growth of White-Rot Fungus Stereum sp.. Curr Microbiol 64, 173–178 (2012). https://doi.org/10.1007/s00284-011-0050-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-0050-y

Keywords

Navigation