Current Microbiology

, 63:561 | Cite as

Paracoccus oceanense sp. nov., Isolated from the West Pacific

  • Yingnan Fu
  • Qipei Li
  • Keshao Liu
  • Yongle Xu
  • Yanan Wang
  • Nianzhi Jiao


A Gram-negative, short ovoid- to coccus-shaped, aerobic, motile, non-spore-forming bacterium (designated strain JLT1679T) was isolated from West Pacific. Cells have subpolar flagella, dividing by binary fission. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain belongs to branch of the evolutionary radiation occupied by the genus Paracoccus, family Rhodobacteraceae, order Rhodobacterales, class Alphaproteobacteria. The closest neighbours were Paracoccusstylophorae KTW-16T (97.1% similarity), Paracoccus caeni strain MJ17T (96.5% similarity), Paracoccus homiensis DD-R11T (96.0% similarity) and Paracoccus alcaliphilus JCM 7364T (95.8% similarity). The predominant cellular fatty acids of strain JLT1679T were summed feature 8 (18:1ω6c) (38.8%), C18:0 (27.7%), C16:0 (22.5%), and significant amounts of C18:1 ω9c (5.1%), C14:0 (3.8%) and C18:1 ω7c 11-methyl (2.1%), were present. The predominant respiratory ubiquinone of strain JLT1679T was Q-10 and the DNA G + C content of strain JLT1679T was 59.5 mol%. The polar lipid profile consisted of a mixture of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine and sphingoglycolipid. The isolate was distinguishable from members of the genus Paracoccus on the basis of phenotypic and biochemical characteristics. It is evident from the genotypic, chemotaxonomic and phenotypic data that strain JLT1679T represents a novel species of the genus Paracoccus, for which the name Paracoccus oceanense sp. nov. is proposed. The type strain is JLT1679T (= JCM 17768T = CGMCC 1.10831T).


  1. 1.
    Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busses H-J (1996) Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52CrossRefGoogle Scholar
  2. 2.
    Andrews JM (2008) BSAC standardized disc susceptibility testing method (Version 7). J Antimicrob Chemother 62:256–278PubMedCrossRefGoogle Scholar
  3. 3.
    Barritt MM (1936) The intensification of the Voges–Proskauer reaction by the addition of a-naphthol. J Pathol Bacteriol 42:441–445CrossRefGoogle Scholar
  4. 4.
    Berry A, Janssens D, Hümbelin M et al (2003). Paracoccus zeaxanthinifaciens sp. nov., a zeaxanthin-producing bacterium. Int J Syst Evol Microbiol 53:231–238Google Scholar
  5. 5.
    Clarke PH (1953) Hydrogen sulphide production by bacteria. J Gen Microbiol 8:397–407PubMedGoogle Scholar
  6. 6.
    Chen MH, Sheu SY, Chen CA, Wang JT, Chen WM (2010) Paracoccus isoporae sp. nov., isolated from the reef-building coral Isopora palifera. Int J Syst Evol Microbiol 61:1138–1143PubMedCrossRefGoogle Scholar
  7. 7.
    Chun J, Lee J-H, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261PubMedCrossRefGoogle Scholar
  8. 8.
    Daneshvar MI, Hollis DG, Weyant RS, Steigerwalt AG, Whitney AM, Douglas MP, Macgregor JP, Jordan JL, Bernard K (2003) Paracoccus yeeii sp. nov. (formerly CDC group EO-2), a novel bacterial species associated with human infection. J Clin Microbiol 41:1289–1294PubMedCrossRefGoogle Scholar
  9. 9.
    Davis DH, Doudoroff M, Stanier RY, Mandel M (1969) Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 19:375–390CrossRefGoogle Scholar
  10. 10.
    Deng ZS, Zhao LF, Xu L, Kong ZY, Zhao P, Qin W, Chang JL, Wei GH (2010) Paracoccus sphaerophysae sp. nov., a siderophore-producing, endophytic bacterium isolated from root nodules of a Sphaerophysa salsula growing in northwestern China. Int J Syst Evol Microbiol 61:665–669PubMedCrossRefGoogle Scholar
  11. 11.
    Dong X-Z, Cai M-Y (2001) Determinative manual for routine bacteriology. Scientific Press, PekingGoogle Scholar
  12. 12.
    Eck RV, Dayhoff MO (1966) In: Dayhoff MO (ed) Atlas of protein sequence and structure. National Biomedical Research Foundation, Silver Spring, pp 161–169Google Scholar
  13. 13.
    Embley TM (1991) The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 13:171–174PubMedCrossRefGoogle Scholar
  14. 14.
    Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  15. 15.
    Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DCGoogle Scholar
  16. 16.
    Harker M, Hirschberg J, Oren A (1998) Paracoccus marcusii sp. nov., an orange gram-negative coccus. Int J Syst Bacteriol 48:543–548PubMedGoogle Scholar
  17. 17.
    Hirashi A, Ueda Y, Ishihara J (1998) Quinone profiling of bacterial communities in natural and synthetic sewage activated sludge for enhanced phosphate removal. Appl Environ Microbiol 64:992–998Google Scholar
  18. 18.
    Johnson JL (1994) Similarity analysis of DNAs. In: Gerhardt P, Murray RG E, Wood WA, Krieg NR (eds) Method for general and molecular bacteriology. American Society for Microbiology press, Washington, DC, pp 655–681Google Scholar
  19. 19.
    Kim B-Y, Weon H-Y, Yoo S-H, Kwon S-W, Cho Y-H, Stackebrandt E, Go S-J (2006) Paracoccus homiensis sp. nov., isolated from a sea-sand sample. Int J Syst Evol Microbiol 56:2387–2390PubMedCrossRefGoogle Scholar
  20. 20.
    Kim Y-O, Kong H J, Park S, Kang S-J, Kim K-K, Moon D Y, Oh T-K and Yoon J-H (2010) Paracoccus fistulariae sp. nov., a lipolytic bacterium isolated from bluespotted cornetfish, Fistularia commersonii. doi: 10.1099/ijs.0.021808-0
  21. 21.
    Komagata K, Suzuki K (1987) Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–206CrossRefGoogle Scholar
  22. 22.
    Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment briefings. Bioinformatics 5:150–163PubMedGoogle Scholar
  23. 23.
    La HJ, Im W-T, Ten LN, Kang MS, Shin DY, Lee ST (2005) Paracoccus koreensis sp. nov., isolated from anaerobic granules in an upflow anaerobic sludge blanket (UASB) reactor. Int J Syst Evol Microbiol 55:1657–1660PubMedCrossRefGoogle Scholar
  24. 24.
    Lee JH, Kim YS, Choi T-J, Lee WJ, Kim YT (2004) Paracoccus haeundaensis sp. nov., a gram-negative, halophilic, astaxanthin-producing bacterium. Int J Syst Evol Microbiol 54:1699–1702PubMedCrossRefGoogle Scholar
  25. 25.
    Lee MJ, Woo SG, Kim MK (2010) Paracoccus caeni sp. nov., isolated from sludge. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.017897-0
  26. 26.
    Liu X-Y, Wang B-J, Jiang C-Y, Liu S-J (2006) Paracoccus sulfuroxidans sp. nov., a sulfur oxidizer from activated sludge. Int J Syst Evol Microbiol 56:2693–2695PubMedCrossRefGoogle Scholar
  27. 27.
    Liu Z-P, Wang B-J, Liu X-Y, Dai X, Liu Y-H, Liu S-J (2008) Paracoccus halophilus sp. nov., isolated from marine sediment of the South China Sea, China, and emended description of genus Paracoccus Davis 1969. Int J Syst Evol Microbiol 58:257–261PubMedCrossRefGoogle Scholar
  28. 28.
    Mandel M, Igambi L, Bergenda J, Dodson ML, Scheltge E (1970) Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J Bacteriol 101:333–338PubMedGoogle Scholar
  29. 29.
    Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218CrossRefGoogle Scholar
  30. 30.
    Mata JA, Martínez-Cánovas J, Quesada E, Béjar V (2002) A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375PubMedCrossRefGoogle Scholar
  31. 31.
    Nokhal TH, Schlegel HG (1983) Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 33:26–37CrossRefGoogle Scholar
  32. 32.
    Romano I, Lama L, Nicolaus B, Poli A, Gambacorta A, Giordano A (2006) Halomonas alkaliphila sp. nov., a novel halotolerant alkaliphilic bacterium isolated from a salt pool in Campania (Italy). J Gen Appl Microbiol 52:339–348PubMedCrossRefGoogle Scholar
  33. 33.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  34. 34.
    Sheu SY, Jiang SR, Chen CA, Wang JT, Chen WM (2011) Paracoccus stylophorae sp. nov., isolated from the reef-building coral Stylophora pistillata. Int J Syst Evol Microbiol 61:2221–2226Google Scholar
  35. 35.
    Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular microbiology. American Society for Microbiology, Washington, DC, pp 611–654Google Scholar
  36. 36.
    Siller H, Rainey FA, Stackebrandt E & Winter J (1996). Isolation and characterization of a new Gram-negative, acetone-degrading, nitrate-reducing bacterium from soil, Paracoccus solventivorans sp. nov. Int J Syst Bacteriol 46(372):1125–1130Google Scholar
  37. 37.
    Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202CrossRefGoogle Scholar
  38. 38.
    Tsubokura A, Yoneda H, Mizuta H (1999) Paracoccus carotinifaciens sp.nov., a new aerobic gram-negative astaxanthin-producing bacterium. Int J Syst Bacteriol 49:277–282PubMedCrossRefGoogle Scholar
  39. 39.
    Urakami T, Tamaoka J, Suzuki K, Komagata K (1989) Paracoccus alcaliphilus sp. nov., an alkaliphilic and facultatively methylotrophic bacterium. Int J Syst Bacteriol 39:116–121Google Scholar
  40. 40.
    Wallet F, Blondiaux N, Foy CL, Loïez C, Armand S, Pagniez D, Courcol RJ (2010) Paracoccus yeei: a new unusual opportunistic bacterium in ambulatory peritoneal dialysis. Int J Infect Dis 14:e173–e174PubMedCrossRefGoogle Scholar
  41. 41.
    Wang Y, Tang S-K, Lou K, Mao P-H, Jin X, Jiang C-L, Xu L-H, Li W-J (2009) Paracoccus saliphilus sp. nov., a halophilic bacterium isolated from a saline soil. Int J Syst Evol Microbiol 59:1924–1928PubMedCrossRefGoogle Scholar
  42. 42.
    Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813PubMedGoogle Scholar
  43. 43.
    Yurkov VV, Krieger S, Stackebrandt E, Beatty JT (1999) Citromicrobium bathyomarinum, a novel aerobic bacterium isolated from deep-sea hydrothermal vent plume waters that contains photosynthetic pigment-protein complexes. J Bacteriol 181(15):4517–4525PubMedGoogle Scholar
  44. 44.
    Zumft WG (1992) The denitrifying bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, application. Springer Verlag Press, New York, pp 554–582Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yingnan Fu
    • 1
  • Qipei Li
    • 1
  • Keshao Liu
    • 1
  • Yongle Xu
    • 1
  • Yanan Wang
    • 1
    • 2
  • Nianzhi Jiao
    • 1
  1. 1.State Key Laboratory of Marine Environmental ScienceXiamen UniversityXiamenPeople’s Republic of China
  2. 2.Key Laboratory of Microbial EngineeringThe Institute of Biology, Henan Academy of SciencesZhengzhouPeople’s Republic of China

Personalised recommendations