Current Microbiology

, Volume 62, Issue 4, pp 1274–1281 | Cite as

Chemical Composition and Antibacterial Potential of Artemisia arborescens L. Essential Oil

  • M. Militello
  • L. Settanni
  • A. Aleo
  • C. Mammina
  • G. Moschetti
  • G. M. Giammanco
  • M. Amparo  Blàzquez
  • A. Carrubba


This study was undertaken to characterize the essential oil (EO) of Artemisia arborescens growing wild in Sicily. EO, extracted by steam distillation, was examined for its chemical composition and for its capability to inhibit some food-borne pathogen bacteria. A total of 43 compounds (13 monoterpene hydrocarbons, 14 oxygenated monoterpenes, 10 sesquiterpene hydrocarbons, three oxygenated sesquiterpenes and less amount of other three compounds), which account 93.73% of the total oil, were identified by gas chromatography and gas chromatography–mass spectrometry. Oxygenated monoterpenes (57.32%) constituted the main fraction, with β-thujone as the main compound (45.04%), followed by the sesquiterpene hydrocarbon chamazulene (22.71%). Undiluted EO showed a large inhibition spectrum against strains of Listeria monocytogenes (34 out of 44), whilst it was ineffective against enterobacteria and salmonellas. The minimum inhibition concentration (MIC) was evaluated for the two most sensitive strains (L. monocytogenes 186 and 7BO) at two cellular concentrations (106 and 107 CFU ml−1). The lowest MIC (0.625 μl ml−1, dilution of oil with acetone) was found for strain L. monocytogenes 186 at 106 CFU ml−1.


  1. 1.
    Abderrahim A, Belhamel K, Chalchat J-C, Figuérédo G (2010) Chemical composition of the essential oil from Artemisia arborescens L. growing wild in Algeria. Records Nat Prod 4:87–90Google Scholar
  2. 2.
    Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation, Carol StreamGoogle Scholar
  3. 3.
    Al-Momani W, Abu-Basha E, Janakat S, Nicholas RAJ, Ayling RD (2007) In vitro antimycoplasmal activity of six Jordanian medicinal plants against three Mycoplasma species. Trop Anim Health Prod 39:515–519PubMedCrossRefGoogle Scholar
  4. 4.
    Al-Reza SM, Rahman A, Lee J, Kang SC (2010) Potential roles of essential oil and organic extracts of Zizyphus jujuba in inhibiting food-borne pathogens. Food Chem 119:981–986CrossRefGoogle Scholar
  5. 5.
    Burt S (2004) Essential oils: their antibacterial properties and potential application in foods—a review. Int J Food Microbiol 94:223–253PubMedCrossRefGoogle Scholar
  6. 6.
    Calsamiglia S, Busquet M, Cardozo PW, Castillejos L, Ferret A (2007) Invited review: essential oils as modifiers of rumen microbial fermentation. J Dairy Sci 90:2580–2595PubMedCrossRefGoogle Scholar
  7. 7.
    Carrubba A, Calabrese I (1998) Antioxidant compounds in some herbaceous aromatic plants. Acta Hortic 457:85–93Google Scholar
  8. 8.
    Carrubba A, Catalano C (2009) Essential oil crops for sustainable agriculture—a review. In: Lichtfouse E (ed) Climate change, intercropping, pest control and beneficial microorganisms. Springer Science + Business Media, Dijon, pp 137–188CrossRefGoogle Scholar
  9. 9.
    Crum-Cianflone NF (2008) Salmonellosis and the gastrointestinal tract: more than just peanut butter. Curr Gastroenterol Rep 10:424–431PubMedCrossRefGoogle Scholar
  10. 10.
    Davidson PM, Naidu AS (2000) Phyto-phenols. In: Naidu AS (ed) Natural food antimicrobial systems. CRC Press, Boca Raton, pp 265–293Google Scholar
  11. 11.
    Dessì MA, Deiana M, Rosa A, Piredda M, Cottiglia F, Bonsignore L, Deidda D, Pompei R, Corongiu FP (2001) Antioxidant activity of extracts from plants growing in Sardinia. Phytother Res 15:511–518PubMedCrossRefGoogle Scholar
  12. 12.
    Di Pasqua R, De Feo V, Villani F, Mauriello G (2005) In vitro antimicrobial activity of essential oils from Mediterranean Apiaceae, Verbenaceae and Lamiaceae against foodborne pathogens and spoilage bacteria. Ann Microbiol 55:139–143Google Scholar
  13. 13.
    Drevets DA, Bronze MS (2008) Listeria monocytogenes: epidemiology, human disease, and mechanisms of brain invasion. FEMS Immunol Med Microbiol 53:151–165PubMedCrossRefGoogle Scholar
  14. 14.
    Dudain N, Poljakoff-Mayber A, Mayer AM, Putievsky E, Lerner HR (1999) Essential oils as allelochemicals and their potential use as bioherbicides. J Chem Ecol 25:1079–1089CrossRefGoogle Scholar
  15. 15.
    El-Sakhawy FS, El-Tantawy ME, Ross SA, El-Sohly MA (1998) Composition and antimicrobial activity of the essential oil of Murraya exotica L. Flav Fragr J 13:59–62CrossRefGoogle Scholar
  16. 16.
    European Commission (2003) Opinion of the scientific committee on food on Thujone. Expressed on 2nd Dec 2002. European Commission—Health and Consumer Protection Directorate-General, Scientific Committee on Food—SCF/CS/FLAV/FLAVOUR/23 ADD2 Final, 6 February 2003Google Scholar
  17. 17.
    Farber JM (2000) Present situation in Canada regarding Listeria monocytogenes and ready-to-eat seafood products. Int J Food Microbiol 62:247–251PubMedCrossRefGoogle Scholar
  18. 18.
    Franz C, Novak J (2010) Sources of essential oils. In: Baser KHC, Buchbauer G (eds) Handbook of essential oils: science technology and applications. CRC Press, Boca Raton, pp 39–81Google Scholar
  19. 19.
    Garcia S, Garnatje T, Twibell JD, Vallès J (2006) Genome size variation in the Artemisia arborescens complex (Asteraceae, Anthemideae) and its cultivars. Genome 49:244–253PubMedCrossRefGoogle Scholar
  20. 20.
    Goulet V, Hedberg C, Le Monnier A, de Valk H (2008) Increasing incidence of listeriosis in France and other European countries. Emerg Infect Dis 14:734–740PubMedCrossRefGoogle Scholar
  21. 21.
    Haraguchi H (2001) Antioxidative plant constituents. In: Tringali C (ed) Bioactive compounds from natural sources isolation characterisation and biological properties. Taylor & Francis, London, pp 337–377Google Scholar
  22. 22.
    Healy B, Cooney S, O’Brien S, Iversen C, Whyte P, Nally J, Callanan JJ, Fanning S (2010) Cronobacter (Enterobacter sakazakii): an opportunistic food-borne pathogen. Foodborne Pathog Dis 7:339–350PubMedCrossRefGoogle Scholar
  23. 23.
    Jacobson L (2008) Listeriosis. Pediatr Rev 29:410–411PubMedCrossRefGoogle Scholar
  24. 24.
    Jerkovich I, Mastelic M, Milos M, Juteau F, Masotti V, Viano J (2003) Chemical variability of Artemisia vulgaris L. essential oils originated from the Mediterranean area of France and Croatia. Flav Fragr J 18:436–440CrossRefGoogle Scholar
  25. 25.
    Karapinar M, Aktug SE (1987) Inhibition of foodborne pathogens by thymol, eugenol, menthol and anethole. Int J Food Microbiol 4:161–166CrossRefGoogle Scholar
  26. 26.
    Kelmanson JE, Jager AK, Van Staden J (2000) Zulu medicinal plants with antibacterial activity. J Ethnopharmacol 69:241–246PubMedCrossRefGoogle Scholar
  27. 27.
    Khan R, Islam B, Akram M, Shakil S, Ahmad A, Ali SM, Siddiqui M, Khan AU (2009) Antimicrobial activity of five herbal extracts against multi drug resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules 14:586–597PubMedCrossRefGoogle Scholar
  28. 28.
    Kordali S, Cakir A, Mavi A, Kilic H, Yildirim A (2005) Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish Artemisia Species. J Agric Food Chem 53:1408–1416PubMedCrossRefGoogle Scholar
  29. 29.
    Lai F, Wissing SA, Müller RH, Fadda AM (2006) Artemisia arborescens L essential oil–loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS PharmSciTech, 7 (1) Article 2
  30. 30.
    Lai F, Loy G, Manconi M, Manca ML, Fadda AM (2007) Artemisia arborescens L essential oil loaded beads: preparation and characterization. AAPS PharmSciTech, 8 (3) Article 67
  31. 31.
    Lopes-Lutz D, Alviano DS, Alviano CS, Kolodziejczyk PP (2008) Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry 69:1732–1738PubMedCrossRefGoogle Scholar
  32. 32.
    Lo Presti M, Crupi ML, Zellner B, Dugo G, Mondello L, Dugo P, Mondello L, Dugo P, Ragusa S (2007) Characterization of Artemisia arborescens L. (Asteraceae) leaf-derived essential oil from Southern Italy. J Essent Oil Res 19:218–224Google Scholar
  33. 33.
    Marongiu B, Piras A, Porcedda S (2010) Comparative analysis of the oil and supercritical CO2 extract of Artemisia arborescens L. and Helichrysum splendidum (Thunb.) Less. Nat Prod Res 20:421–428CrossRefGoogle Scholar
  34. 34.
    McGuffin M, Hobbs C, Upton R, Goldberg A (1997) American herbal products association’s botanical safety handbook. CRC Press, Boca RatonGoogle Scholar
  35. 35.
    National Toxicology Program (2010) Testing status of agents at NTP (US National Toxicology Program—Department of Health and Human Services) Alpha-Thujone; alpha/beta-Thujone mixture. US.; Last accessed 16 July 2010
  36. 36.
    Nguyen TPT, Nguyen TT, Tran MH, Tran HT (2004) Artemisia vulgaris L. from Vietnam: chemical variability and composition of the oil along the vegetative life of the plant. J Essent Oil Res 16:358–361Google Scholar
  37. 37.
    Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382–388PubMedCrossRefGoogle Scholar
  38. 38.
    Nychas GJE, Tassou CC, Skandamis P (2003) Antimicrobials from herbs and spices. In: Roller SM (ed) Natural antimicrobials for the minimal processing of foods. Woodhead Publishers, CRC Press, New York, pp 176–200CrossRefGoogle Scholar
  39. 39.
    Pappas R, Sheppard-Hanger S (2000) Artemisia arborescens—essential oil of the Pacific Northwest: a high-chamazulene, low-thujone essential oil with potential skin-care applications.
  40. 40.
    Pignatti S (1982) Flora d’Italia. Edagricole, BolognaGoogle Scholar
  41. 41.
    Salamon I (2009) Chamomile biodiversity of the essential oil. Qualitative–quantitative characteristics. In: Sener B (ed) Innovations in chemical biology. Springer Science + Business Media, Dordrecht, pp 83–90CrossRefGoogle Scholar
  42. 42.
    Settanni L, Corsetti A (2008) Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol 121:123–138PubMedCrossRefGoogle Scholar
  43. 43.
    Sinico C, De Logu A, Lai F, Valenti D, Manconi M, Loy G, Bonsignore L, Fadda AM (2005) Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. Eur J Pharm Biopharm 59:161–168PubMedCrossRefGoogle Scholar
  44. 44.
    Swaminathan B, Gerner-Smidt P (2007) The epidemiology of human listeriosis. Microb Infect 9:1236–1243CrossRefGoogle Scholar
  45. 45.
    Tewtrakul S, Yuenyongsawad S, Kummee S, Atsawajaruwan L (2005) Chemical components and biological activities of volatile oil of Kaempferia galanga Linn. Songklanakarin J Sci Technol 27:503–507Google Scholar
  46. 46.
    Wagner C, Friedt W, Marquard RA, Ordon F (2005) Molecular analyses on the genetic diversity and inheritance of (−)-α-bisabolol and chamazulene content in tetraploid chamomile (Chamomilla recutita (L.) Rausch.). Plant Sci 169:917–927CrossRefGoogle Scholar
  47. 47.
    Xu HX, Lee SF (2001) Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother Res 15:39–43PubMedCrossRefGoogle Scholar
  48. 48.
    Yuenyongsawad S, Tewtrakul S (2005) Essential oil components and biological activities of Coleus parvifolius leale. Songklanakarin J Sci Technol 27:497–502Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • M. Militello
    • 1
  • L. Settanni
    • 2
  • A. Aleo
    • 3
  • C. Mammina
    • 3
  • G. Moschetti
    • 2
  • G. M. Giammanco
    • 3
  • M. Amparo  Blàzquez
    • 4
  • A. Carrubba
    • 1
  1. 1.Dipartimento di Agronomia Ambientale e Territoriale (DAAT), Facoltà di AgrariaUniversità di PalermoPalermoItaly
  2. 2.SENFIMIZO Department, Section of Phytopathology and Agricultural MicrobiologyUniversity of PalermoPalermoItaly
  3. 3.Department of Health Promotion Sciences“G. D’Alessandro” University of PalermoPalermoItaly
  4. 4.Departamento de Farmacologia, Facultat de FarmàciaUniversitat de ValènciaValenciaSpain

Personalised recommendations