Current Microbiology

, Volume 62, Issue 4, pp 1139–1146 | Cite as

Dairy Farm Age and Resistance to Antimicrobial Agents in Escherichia coli Isolated from Dairy Topsoil

  • Suzanna E. Jones
  • Jonathan M. Burgos
  • Marvin M. F. Lutnesky
  • Johnny A. Sena
  • Sanath Kumar
  • Lindsay M. Jones
  • Manuel F. Varela


Antimicrobial agent usage is common in animal agriculture for therapeutic and prophylactic purposes. Selective pressure exerted by these antimicrobials on soil bacteria could result in the selection of strains that are resistant due to chromosomal- or plasmid-derived genetic components. Multiple antimicrobial resistances in Escherichia coli and the direct relationship between antimicrobial agent use over time has been extensively studied, yet the relationship between the age of an animal agriculture environment such as a dairy farm and antibiotic resistance remains unclear. Therefore, we tested the hypothesis that antimicrobial-resistance profiles of E. coli isolated from dairy farm topsoil correlate with dairy farm age. E. coli isolated from eleven dairy farms of varying ages within Roosevelt County, NM were used for MIC determinations to chloramphenicol, nalidixic acid, penicillin, tetracycline, ampicillin, amoxicillin/clavulanic acid, gentamicin, trimethoprim/sulfamethoxazole, cefotaxime, and ciprofloxacin. The minimum inhibitory concentration values of four antibiotics ranged 0.75 to >256 μg/ml, 1 to >256 μg/ml, 12 to >256 μg/ml, and 0.75 to >256 μg/ml for chloramphenicol, nalidixic acid, penicillin, and tetracycline, respectively. The study did not show a direct relationship between antibiotic resistance and the age of dairy farms.


Cefotaxime Dairy Cattle Nalidixic Acid Dairy Farm Gatifloxacin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by National Institutes of Health grants 1 R15 GM070562-01 and P20 RR016480, the latter of which is from the NM-INBRE program of the National Center for Research Resources, a contribution from Calton Research Associates in honor of George and Clytie Calton, and an Internal Research Grant from ENMU.


  1. 1.
    Barbosa TM, Levy SB (2000) The impact of antibiotic use on resistance development and persistence. Drug Resist Updat 3:303–311PubMedCrossRefGoogle Scholar
  2. 2.
    Bradford PA, Petersen PJ, Fingerman IM, White DG (1999) Characterization of expanded-spectrum cephalosporin resistance in Escherichia coli isolates associated with bovine calf diarrheal disease. J Antimicrob Chemother 44:607–610PubMedCrossRefGoogle Scholar
  3. 3.
    Bunner CA, Norby B, Bartlett PC, Erskine RJ, Downes FP, Kaneene JB (2007) Prevalence and pattern of antimicrobial susceptibility in Escherichia coli isolated from pigs reared under antimicrobial-free and conventional production methods. J Am Vet Med Assoc 231:275–283PubMedCrossRefGoogle Scholar
  4. 4.
    Burgos JM, Ellington BA, Varela MF (2005) Presence of multi-drug resistant enteric bacteria in dairy farm topsoil. J Dairy Sci 88:1391–1398PubMedCrossRefGoogle Scholar
  5. 5.
    Chee-Sanford JC, Aminov RI, Krapac IJ, Garrigues-Jeanjean N, Mackie RI (2001) Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl Environ Microbiol 67:1494–1502PubMedCrossRefGoogle Scholar
  6. 6.
    Clinical and Laboratory Standards Institute (CLSI) (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard-seventh edition CLSI document M7-A7, vol 26, No. 226, No. 2Google Scholar
  7. 7.
    Cohen SP, Hächler H, Levy SB (1993) Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli. J Bacteriol 175:1484–1492PubMedGoogle Scholar
  8. 8.
    D’Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311:374–377PubMedCrossRefGoogle Scholar
  9. 9.
    Ferber D (2002) Livestock feed ban preserves drugs’ power. Science 295:27–28PubMedCrossRefGoogle Scholar
  10. 10.
    Gannon VP, Rashed M, King RK, Thomas EJ (1993) Detection and characterization of the eae gene of Shiga-like toxin-producing Escherichia coli using polymerase chain reaction. J Clin Microbiol 31:1268–1274PubMedGoogle Scholar
  11. 11.
    Gavalchin J, Katz SE (1994) The persistence of fecal-borne antibiotics in soil. J AOAC Int 77:481–485Google Scholar
  12. 12.
    George AM, Levy SB (1983) Amplifiable resistance to tetracycline, chloramphenicol and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline. J Bacteriol 155:531–540PubMedGoogle Scholar
  13. 13.
    Gustafson RH, Bowen RE (1997) Antibiotic use in animal agriculture. J Appl Microbiol 83:531–541PubMedCrossRefGoogle Scholar
  14. 14.
    Hanzawa T, Oka C, Ishiguru N, Sato G (1984) Antibiotic-resistant coliforms in the waste of piggeries and dairy farms. Jpn J Vet Sci 46:363–372Google Scholar
  15. 15.
    Hächler H, Cohen SP, Levy SB (1991) marA, a regulated locus which controls expression of chromosomal multiple antibiotic resistance in Escherichia coli. J Bacteriol 173:5532–5538PubMedGoogle Scholar
  16. 16.
    Itoh F, Ogino T, Itoh K, Watanabe H (1992) Differentiation and detection of pathogenic determinants among diarrheagenic Escherichia coli by polymerase chain reaction using mixed primers. Jpn J Clin Med 50:343–347Google Scholar
  17. 17.
    Lanz R, Kuhnert P, Boerlin P (2003) Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Vet Microbiol 91:73–84PubMedCrossRefGoogle Scholar
  18. 18.
    Moken MC, McMurry LM, Levy SP (1997) Selection of multiple-antibiotic-resistant (mar) mutants of Escherichia coli by using the disinfectant pine oil: roles of the mar and acrAB loci. Antimicrob Agents Chemother 41:2770–2772PubMedGoogle Scholar
  19. 19.
    Murray PR, Rosenthal K, Kobayashi G, Pfaller M (2005) Antibacterial agents. In: Schmitt W, Miller K (eds) Medical microbiology, 5th edn. Elsevier Mosby, PhiladelphiaGoogle Scholar
  20. 20.
    Nuru S, Osbaldiston GW, Stowe EC, Walker D (1972) Fecal microflora of healthy cattle and pigs. Cornell Vet 62:242–253PubMedGoogle Scholar
  21. 21.
    Oethinger M, Podglajen I, Kern WV, Levy SB (1998) Overexpression of the marA or soxS regulatory gene in clinical topoisomerase mutants of Escherichia coli. Antimicrob Agents Chemother 42:2089–2094PubMedGoogle Scholar
  22. 22.
    Peng Y, Hernandez RL, Crow RR, Jones SE, Mathews SA, Arnold AM, Castillo EF, Moseley JM, Varela MF (2008) Pasteurized whole milk confers reduced susceptibilities to the antimicrobial agents trimethoprim, gatifloxacin, cefotaxime, and tetracycline via the marCRAB locus in Escherichia coli. J Dairy Res 75:491–496PubMedCrossRefGoogle Scholar
  23. 23.
    Price LB, Johnosn E, Vailes R, Silbergeld E (2005) Fluoroquinolone-resistant Campylobacter isolates from conventional and antibiotic-free chicken products. Environ Health Perspect 113:557–560PubMedCrossRefGoogle Scholar
  24. 24.
    Sato K, Bartlett PC, Saeed MA (2005) Antimicrobial susceptibility of Escherichia coli isolates from dairy farms using organic versus conventional production methods. J Am Vet Med Assoc 226:589–594PubMedCrossRefGoogle Scholar
  25. 25.
    Sawant AA, Sordillo LM, Jayarao BM (2005) A survey on antibiotic usage in dairy herds in Pennsylvania. J Dairy Sci 88:2991–2999PubMedCrossRefGoogle Scholar
  26. 26.
    Schmidt H, Knop C, Franke S, Aleksic S, Heesemann J, Karch H (1995) Development of PCR for screening of enteroaggregative Escherichia coli. J Clin Microbiol 33:701–705PubMedGoogle Scholar
  27. 27.
    Silbergeld EK, Graham J, Price LB (2008) Industrial food animal production, antimicrobial resistance, and human health. Ann Rev Pub Health 29:151–169CrossRefGoogle Scholar
  28. 28.
    Summers AO (2006) Generally overlooked fundamentals of bacterial genetics and ecology. Clin Infect Dis 34:S85–S92CrossRefGoogle Scholar
  29. 29.
    Szybalski W, Bryson V (1952) Genetic studies on microbial cross resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics. J Bacteriol 64:489–499PubMedGoogle Scholar
  30. 30.
    van den Bogaard AE, Stobberingh EE (1999) Antibiotic usage in animals: impact on bacterial resistance and public health. Drugs 58:589–607PubMedCrossRefGoogle Scholar
  31. 31.
    Wieler LH, Vieler E, Erpenstein C, Schlapp T, Steinruck H, Bauerfeind R, Byomi A, Baljer G (1996) Shiga toxin-producing Escherichia coli strains from bovines: association of adhesion with carriage of eae and other genes. J Clin Microbiol 34:2980–2984PubMedGoogle Scholar
  32. 32.
    Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5:175–186PubMedCrossRefGoogle Scholar
  33. 33.
    Yamamoto T, Wakisaka N, Sato F, Kato A (1997) Comparison of the nucleotide sequence of enteroaggregative Escherichia coli heat-stable enterotoxin I genes among diarrhea-associated Escherichia coli. FEMS Microbiol Lett 147:89–95PubMedCrossRefGoogle Scholar
  34. 34.
    Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Suzanna E. Jones
    • 1
  • Jonathan M. Burgos
    • 1
    • 2
  • Marvin M. F. Lutnesky
    • 1
  • Johnny A. Sena
    • 1
    • 3
  • Sanath Kumar
    • 1
  • Lindsay M. Jones
    • 1
  • Manuel F. Varela
    • 1
  1. 1.Department of BiologyEastern New Mexico UniversityPortalesUSA
  2. 2.Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic ProductsCenter for Biologics Evaluation and Research, Food and Drug AdministrationBethesdaUSA
  3. 3.Department of Molecular BiologyUniversity of Colorado Health Sciences, Anschutz Medical CampusAuroraUSA

Personalised recommendations