Skip to main content

In Vivo Studies of Clostridium perfringens in Mouse Gas Gangrene Model

Abstract

Understanding the pathogenesis of infectious diseases requires comprehensive knowledge of the proteins expressed by the pathogen during in vivo growth in the host. Proteomics provides the tools for such analyses but the protocols required to purify sufficient quantities of the pathogen from the host organism are currently lacking. In this study, we have separated Clostridium perfringens, a highly virulent bacterium and potential BTW agent, from the peritoneal fluid of infected mice using Percoll density gradient centrifugation. The bacterium could be isolated in quantities sufficient to carry out meaningful proteomic comparisons with in vitro grown bacteria. Furthermore, the isolates were found to be virtually free from contaminating host proteins. Microscopy revealed major morphological changes under host conditions at different stages of infection. Profile of immunogenic proteins from in vivo- and TPYG-grown whole cell lysate using mouse anti-gangrene serum indicated over-expression of several proteins especially in the low molecular weight region. Expression of two virulence determinants, ornithine carbamoyl transferase (cOTC), and cystathionine beta-lyase (CBL), under in vivo conditions has also been studied. Two-dimensional gel analysis revealed a host induced proteome which was apparently different in comparison to in vitro grown cells. Detailed proteomic elucidation of differentially expressed proteins shown here is likely to provide valuable insight towards understanding the complexity of the adaptive response of C. perfringens to the host environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abbas AK, Lichtman AH (2003) Cellular and molecular immunology, 5th edn. Saunders, Philadelphia, PA, pp 275–297

    Google Scholar 

  2. Alam SI, Bansod S, Kumar RB, Sengupta N, Singh L (2009) Differential proteomic analysis of Clostridium perfringens ATCC13124; identification of dominant, surface and structure associated proteins. BMC Microbiol 9:162

    PubMed  Article  Google Scholar 

  3. Alpert C, Scheel J, Engst W, Loh G, Blaut M (2009) Adaptation of protein expression by Escherichia coli in the gastrointestinal tract of gnotobiotic mice. Environ Microbiol 11:751–761

    PubMed  Article  CAS  Google Scholar 

  4. Amero SA, James TS, Elgin SCR (1988) Production of antibodies using proteins in gel bands. In: Walker JM (ed) Methods in molecular biology, vol 3. Humana Press, Totowa, NJ, pp 355–362

    Google Scholar 

  5. Angelichio MJ, Camilli A (2002) In vivo expression technology. Infect Immun 70:6518–6523

    PubMed  Article  CAS  Google Scholar 

  6. Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717–731

    PubMed  Article  CAS  Google Scholar 

  7. Blackshear PJ (1984) Systems for polyacrylamide gel electrophoresis. In: Jaeoby WB (ed) Methods in enzymology, vol 104. Academic Press, New York, pp 237–255

    Google Scholar 

  8. Boyce JD, Cullen PA, Adler B (2004) Genomic-scale analysis of bacterial gene and protein expression in the host. Emerg Infect Dis 10(8):1357–1362

    PubMed  CAS  Google Scholar 

  9. Boyce J, Cullen P, Nguyen V, Wilkie I, Adler B (2006) Analysis of the Pasteurella multocida outer membrane sub-proteome and its response to the in vivo environment of the natural host. Proteomics 6:870–880

    PubMed  Article  CAS  Google Scholar 

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    PubMed  Article  CAS  Google Scholar 

  11. Brooks CS, Hefty PS, Jolliff SE, Akins DR (2003) Global analysis of Borrelia burgdorferi genes regulated by mammalian host-specific signals. Infect Immun 71:3371–3383

    PubMed  Article  CAS  Google Scholar 

  12. Chiang SL, Mekalanos JJ, Holden DW (1999) In vivo genetic analysis of bacterial virulence. Annu Rev Microbiol 53:129–154

    PubMed  Article  CAS  Google Scholar 

  13. Coburn B, Sekirov I, Finlay BB (2007) Type III secretion systems and disease. Clin Microbiol Rev 20:535–549

    PubMed  Article  CAS  Google Scholar 

  14. Coleman SA, Fischer ER, Cockrell DC, Voth DE, Howe D, Mead DJ, Samuel JE, Heinzen RA (2007) Proteome and antigen profiling of Coxiella burnetii developmental forms. Infect Immun 75:290–298

    PubMed  Article  CAS  Google Scholar 

  15. Cullen PA, Cordwell SJ, Bulach DM, Haake DA, Adler B (2002) Global analysis of outer membrane proteins from Leptospira interrogans serovar Lai. Infect Immun 70:2311–2318

    PubMed  Article  CAS  Google Scholar 

  16. Dean P, Maresca M, Kenny B (2005) EPEC’s weapons of mass subversion. Curr Opin Microbiol 8:28–34

    PubMed  Article  CAS  Google Scholar 

  17. Ejim LJ, D’Costa VM, Elowe NH, Loredo-Osti C, Malo D, Wright GD (2004) Cystathionine β-lyase is important for virulence of Salmonella enterica serovar Typhimurium. Infect Immun 72(6):3310–3314

    PubMed  Article  CAS  Google Scholar 

  18. Gryllos I, Cywes C, Shearer MH, Cary M, Kennedy RC, Wessels MR (2001) Regulation of capsule gene expression by group A Streptococcus during pharyngeal colonization and invasive infection. Mol Microbiol 42:61–74

    PubMed  Article  CAS  Google Scholar 

  19. Guina T, Wu M, Miller SI, Purvine SO, Yi EC, Eng J, Goodlett DR, Aebersold R, Ernst RK, Lee KA (2003) Proteomic analysis of Pseudomonas aeruginosa grown under magnesium limitation. J Am Soc Mass Spectrom 14:742–751

    PubMed  Article  CAS  Google Scholar 

  20. Hagan EC, Mobley HLT (2007) Uropathogenic Escherichia coli outer membrane antigens expressed during urinary tract infection. Infect Immun 75:3941–3949

    PubMed  Article  CAS  Google Scholar 

  21. Handfield M, Brady LJ, Progulske-Fox A, Hillman JD (2000) IVIAT: a novel method to identify microbial genes expressed specifically during human infections. Trends Microbiol 8:336–339

    PubMed  Article  CAS  Google Scholar 

  22. Helloin E, Jansch L, Phan-Thanh L (2003) Carbon starvation survival of Listeria monocytogenes in planktonic state and in biofilm: a proteomic study. Proteomics 3:2052–2064

    PubMed  Article  CAS  Google Scholar 

  23. Jung TS, Thompson KD, Volpatti D, Galeotti M, Adams A (2008) In vivo morphological and antigenic characteristics of Photobacterium damselae subsp. piscicida. J Vet Sci 9(2):169–175

    PubMed  Article  Google Scholar 

  24. MacLennan JD (1943) Anaerobic infections of war wounds in the Middle East. Lancet ii:123–126

    Article  Google Scholar 

  25. MacLennan JD (1962) The histotoxic clostridial infections of man. Bacteriol Rev 26:177–276

    PubMed  CAS  Google Scholar 

  26. Merrell DS, Butler SM, Qadri F, Dolganov NA, Alam A, Cohen MB et al (2002) Host-induced epidemic spread of the cholera bacterium. Nature 417:642–645

    PubMed  Article  CAS  Google Scholar 

  27. Moine P, Abraham E (2004) Immunomodulation and sepsis: impact of the pathogen. Shock 22:297–308

    PubMed  Article  CAS  Google Scholar 

  28. Monahan AM, Callanan JJ, Nally JE (2008) Proteomic analysis of Leptospira interrogans shed in urine of chronically infected hosts. Infect Immun 76:4952–4958

    PubMed  Article  CAS  Google Scholar 

  29. Nielubowicz GR, Smith SN, Mobley HLT (2008) Outer membrane antigens of the propathogen Proteus mirabilis recognized by the humoral response during experimental murine urinary tract infection. Infect Immun 76:4222–4231

    PubMed  Article  CAS  Google Scholar 

  30. Orihuela CJ, Janssen R, Robb CW, Watson DA, Niesel DW (2000) Peritoneal culture alters Streptococcus pneumoniae protein profiles and virulence properties. Infect Immun 68:6082–6086

    PubMed  Article  CAS  Google Scholar 

  31. Petit L, Gibert M, Popoff MR (1999) Clostridium perfringens toxinotype and genotype. Trends Microbiol 7:104–110

    PubMed  Article  CAS  Google Scholar 

  32. Phan-Thanh L (2002) Proteomic analysis of response to acid in Listeria monocytogenes. Methods Enzymol 358:256–276

    PubMed  Article  Google Scholar 

  33. Pieper R, Zhang Q, Parmar PP, Huang ST, Clark DJ, Alami H, Donohue-Rolfe A, Fleischmann RD, Peterson SN, Tzipori S (2009) The Shigella dysenteriae serotype 1 proteome, profiled in the host intestinal environment, reveals major metabolic modifications and increased expression of invasive proteins. Proteomics 9:5029–5045

    PubMed  Article  CAS  Google Scholar 

  34. Quin LR, Moore QC, Thornton JA, McDaniel LS (2008) Peritoneal challenge modulates expression of pneumococcal surface protein C during bacteremia in mice. Infect Immun 76(3):1122–1127

    PubMed  Article  CAS  Google Scholar 

  35. Revel AT, Talaat AM, Norgard MV (2002) DNA microarray analysis of differential gene expression in Borrelia burgdorferi, the Lyme disease spirochete. Proc Natl Acad Sci USA 99:1562–1567

    PubMed  Article  CAS  Google Scholar 

  36. Rood IR, Cole ST (1991) Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol Rev 55:621–648

    PubMed  CAS  Google Scholar 

  37. Salyers AA, Whitt DD (1994) Bacterial pathogenesis: a molecular approach, 1st edn. ASM Press, Washington, DC, pp 63–72

    Google Scholar 

  38. Schoepe H, Pache C, Neubauer A, Potschka H, Schlapp T, Wieler LH, Baljer G (2001) Naturally occurring Clostridium perfringens nontoxic alpha-toxin variant as a potential vaccine candidate against alpha-toxin-associated diseases. Infect Immun 69(11):7194–7196

    PubMed  Article  CAS  Google Scholar 

  39. Sengupta N, Alam SI, Kumar B, Kumar RB, Gautam V, Kumar S, Singh L (2010) Comparative proteomic analysis of extracellular proteins of Clostridium perfringens type A and type C strains. Infect Immun 78(9):3957–3968

    PubMed  Article  CAS  Google Scholar 

  40. Shimizu T, Shima K, Yoshino K, Yonezawa K, Shimizu T, Hayashi H (2002) Proteome and transcriptome analysis of the virulence genes regulated by the VirR/VirS system in Clostridium perfringens. J Bacteriol 184:2587–2594

    PubMed  Article  CAS  Google Scholar 

  41. Slonczewski JL, Kirkpatrick C (2002) Proteomic analysis of pH-dependent stress responses in Escherichia coli and Helicobacter pylori using two-dimensional gel electrophoresis. Methods Enzymol 358:228–242

    PubMed  Article  CAS  Google Scholar 

  42. Solnick JV, Hansen LM, Salama NR, Boonjakuakul JK, Syvanen M (2004) Modification of Helicobacter pylori outer membrane protein expression during experimental infection of rhesus macaques. Proc Natl Acad Sci USA 101:2106–2111

    PubMed  Article  CAS  Google Scholar 

  43. Stevens DL, Tweten RK, Awad MM, Rood JI, Bryant AE (1997) Clostridial gas gangrene: evidence that alpha and theta toxins differentially modulate the immune response and induce acute tissue necrosis. J Infect Dis 176:189–195

    PubMed  Article  CAS  Google Scholar 

  44. Titball RW, Rood JI (2002) In: Sussman M (ed) Molecular medical microbiology. Academic Press, United Kingdom, pp 1875–1903

    Chapter  Google Scholar 

  45. Tremoulet F, Duche O, Namane A, Martinie B, Labadie JC (2002) Comparison of protein patterns of Listeria monocytogenes grown in biofilm or in planktonic mode by proteomic analysis. FEMS Microbiol Lett 210:25–31

    PubMed  Article  CAS  Google Scholar 

  46. Twine SM, Mykytczuk NCS, Petit MD, Shen H, Sjöstedt A, Conlan JW, Kelly JF (2006) In vivo proteomic analysis of the intracellular bacterial pathogen, Francisella tularensis, isolated from mouse spleen. Biochem Biophys Res Commun 345:1621–1633

    PubMed  Article  CAS  Google Scholar 

  47. Windle HJ, Brown PA, Kelleher DP (2010) Proteomics of bacterial pathogenicity: therapeutic implications. Proteomics Clin Appl 4:1–13

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. R. Vijayaraghavan, Director, DRDE, Gwalior, for providing all facilities and support required for this study. The work has been funded by Defence Research and Development Organization, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Imteyaz Alam.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sengupta, N., Alam, S.I. In Vivo Studies of Clostridium perfringens in Mouse Gas Gangrene Model. Curr Microbiol 62, 999–1008 (2011). https://doi.org/10.1007/s00284-010-9821-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9821-0

Keywords

  • Peritoneal Fluid
  • Virulence Determinant
  • Clostridium Perfringens
  • Ornithine Carbamoyl Transferase
  • Percoll Density Gradient Centrifugation