Skip to main content
Log in

The Euryhaline Yeast Debaryomyces hansenii has Two Catalase Genes Encoding Enzymes with Differential Activity Profile

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Debaryomyces hansenii is a spoilage yeast able to grow in a variety of ecological niches, from seawater to dairy products. Results presented in this article show that (i) D. hansenii has an inherent resistance to H2O2 which could be attributed to the fact that this yeast has a basal catalase activity which is several-fold higher than that observed in Saccharomyces cerevisiae under the same culture conditions, (ii) D. hansenii has two genes (DhCTA1 and DhCTT1) encoding two catalase isozymes with a differential enzymatic activity profile which is not strictly correlated with a differential expression profile of the encoding genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  2. Alba–Lois L, Segal C, Rodarte B et al (2004) NADP–glutamate dehydrogenase activity is increased under hyperosmotic conditions in the halotolerant yeast Debaryomyces hansenii. Curr Microbiol 48:68–72

    Article  PubMed  Google Scholar 

  3. Aguirre J, Ríos-Momberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13:111–118

    Article  PubMed  CAS  Google Scholar 

  4. Bansal PK, Mondal AK (2000) Isolation and sequence of the HOG1 homologue from Debaryomyces hansenii by complementation of the hog1 strain of Saccharomyces cerevisiae. Yeast 16:81–88

    Article  PubMed  CAS  Google Scholar 

  5. Bartosz G (2005) Superoxide dismutases and catalase. In: The handbook of environmental chemistry, vol 2, Part O. Springer, Heidelberg, pp 109–149

  6. Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    PubMed  CAS  Google Scholar 

  7. Breuer U, Harms H (2006) Debaryomyces hansenii–an extremophilic yeast with biotechnological potential. Yeast 23:415–437

    Article  PubMed  CAS  Google Scholar 

  8. Cuéllar-Cruz M, Briones-Martin-del-Campo M, Cañas-Villamar I et al (2008) High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryot Cell 7:814–825

    Article  PubMed  Google Scholar 

  9. Fernandes R, Melo A, Flávia K et al (2010) Purification of Paracoccidioides brasiliensis catalase P: subsequent kinetic and stability Studies. J Biochem 147:345–351

    Article  PubMed  Google Scholar 

  10. Gori K, Hébraud M, Chambon C et al (2007) Proteomic changes in Debaryomyces hansenii upon exposure to NaCl stress. FEMS Yeast Res 7:293–303

    Article  PubMed  CAS  Google Scholar 

  11. Govind NS, McNally KL, Trench RK (1992) Isolation and sequence analysis of the small subunit ribosomal RNA gene from the euryhaline yeast Debaryomyces hansenii. Curr Genet 22:191–195

    Article  PubMed  CAS  Google Scholar 

  12. Guerrero C, Aranda C, DeLuna A et al (2005) Salt-dependent expression of ammonium assimilation genes in the halotolerant yeast, Debaryomyces hansenii. Curr Genet 47:163–171

    Article  PubMed  CAS  Google Scholar 

  13. Hallick RB, Chelm BK, Gray WP, Orozco EM (1977) Use of aurintricarboxylic acid as an inhibitor of nucleases during nucleic acid isolation. Nucleic Acids Res 4:3055–3064

    Article  PubMed  CAS  Google Scholar 

  14. Havir EA (2003) The in vivo and in vitro inhibition of catalase from leaves of Nicotiana sylvestris by 3-amino-1,2,4-triazole. J App Microbiol 95:364–371

    Article  Google Scholar 

  15. Hernández-Saavedra Y, Ochoa JL (1999) Copper–zinc superoxide dismutase from the marine yeast Debaryomyces hansenii. Yeast 15:657–668

    Article  PubMed  Google Scholar 

  16. Izawa S, Inoue Y, Kimura A (1996) Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasemic Saccharomyces cerevisiae. Biochem J 320:61–67

    PubMed  CAS  Google Scholar 

  17. Johnston MA, Delwiche EA (1965) Isolation and characterization of the cyanide-resistant and azide-resistant catalase of Lactobacillus plantarum. J Bacteriol 90:352–356

    PubMed  CAS  Google Scholar 

  18. Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol 295:C849–C868

    Article  CAS  Google Scholar 

  19. Koleva DI, Petrova VY, Kujumdzieva V (2008) Comparison of enzymatic antioxidant defense systems in different metabolic types of yeasts. Can J Microbiol 54:957–963

    Article  PubMed  CAS  Google Scholar 

  20. Krawiec Z, Bilinski T, Schüller C, Ruis H (2000) Reactive oxygen species as second messengers? Induction of the expression of yeast catalase T gene by heat and hyperosmotic stress does not require oxygen. Acta Biochim Pol 47:201–207

    PubMed  CAS  Google Scholar 

  21. Kutty SN, Philip R (2008) Marine yeast–a review. Yeast 25:465–483

    Article  PubMed  CAS  Google Scholar 

  22. Levy E, Eyal Z, Hochmant A (1992) Purification and characterization of a catalase–peroxidase from the fungus Septoria tritici. Arch Biochem Biophys 296:321–327

    Article  PubMed  CAS  Google Scholar 

  23. Lushchak VI, Gospodaryov DV (2005) Catalases protect cellular proteins from oxidative modification in Saccharomyces cerevisiae. Cell Biol Intern 29:187–192

    Article  CAS  Google Scholar 

  24. Lushchak VI (2006) Budding yeast Saccharomyces cerevisiae as a model to study oxidative modification of proteins in eukaryotes. Acta Biochim Pol 53:679–684

    PubMed  CAS  Google Scholar 

  25. Mozaffar S, Ueda M, Kitatsuji K et al (1986) Properties of catalase purified from a methanol-grown yeast, Kloeckera sp. 2201. Eur J Biochem 155:527–531

    Article  PubMed  CAS  Google Scholar 

  26. Navarrete C, Siles A, Martinez JL et al (2009) Oxidative stress sensitivity in Debaryomyces hansenii. FEMS Yeast Res 9:582–590

    Article  PubMed  CAS  Google Scholar 

  27. Navarro RE, Aguirre J (1998) Posttranscriptional control mediates cell type-specific localization of catalase A during Aspergillus nidulans development. J Bact 180:5733–5738

    PubMed  CAS  Google Scholar 

  28. Nelson DP, Kiesow LA (1972) Enthalpy of decomposition of hydrogen peroxide by catalase at 25°C (with molar extinction coefficients of H2O2 solutions in the UV). Anal Biochem 49:474–478

    Article  PubMed  CAS  Google Scholar 

  29. Norkrans B (1966) Studies on marine occurring yeasts: growth related to pH, NaCl concentration and temperature. Arch Mikrobiol 54:374–392

    Article  Google Scholar 

  30. Papouska K, Sychrova H (2007) The co-action of osmotic and high temperature stresses results in a growth improvement of Debaryomyces hansenii cells. Int J Food Microbiol 118:1–7

    Article  Google Scholar 

  31. Petrovič U (2006) Role of oxidative stress in the extremely salt-tolerant yeast Hortaea werneckii. FEMS Yeast Res 6:816–822

    Article  PubMed  Google Scholar 

  32. Petrovič U, Gunde-Cimerman N, Plemenitaŝ A (2002) Cellular responses to environmental salinity in the halophilic black yeast Hortaea werneckii. Mol Microbiol 45:665–672

    Article  PubMed  Google Scholar 

  33. Price VE, Rechcigl M, Hartley RW (1961) Methods for determining the rates of catalase synthesis and destruction in vivo. Nature 189:62–63

    Article  PubMed  CAS  Google Scholar 

  34. Prista C, Almagro A, Loureiro-Diaz MC, Ramos J (1997) Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl Enviromen Microbiol 63:4005–4009

    CAS  Google Scholar 

  35. Putnam CD, Arvai AS, Bourne Y, Tainer JA (2000) Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J Mol Biol 296:295–309

    Article  PubMed  CAS  Google Scholar 

  36. Ramos J (2005) Introducing Debaryomyces hansenii, a salt loving yeast. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Netherlands, pp 441–451

    Chapter  Google Scholar 

  37. Rørth M, Jensen PK (1976) Determination of catalase activity by means of the Clark oxygen electrode. Biochim Biophys Acta 139:171–173

    Google Scholar 

  38. Ruis H, Köller F (1997) Biochemistry, molecular and cell biology of yeast and fungal catalases. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defences. Cold Spring Harbor, New York, pp 309–342

    Google Scholar 

  39. Sánchez NS, Arreguín R, Calahorra M, Peña A (2008) Effects of salts on aerobic metabolism of Debaryomyces hansenii. FEMS Yeast Res 8:1303–1312

    Article  PubMed  Google Scholar 

  40. Scandalios JG (2002) The rise of ROS. Trends Biochem Sci 27:483–486

    Article  PubMed  CAS  Google Scholar 

  41. Sherman DJ, Martin T, Nikolski M, et al. Génolevures Consortium (2009) Génolevures: protein families and synteny among complete hemiascomycetous yeast proteomes and genomes. Nucl Acid Res 37, Database issue: D550–D554

  42. Schuller C, Brewster JL, Alexander MR et al (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 13:4382–4389

    PubMed  CAS  Google Scholar 

  43. Steels EL, Learmonth RP, Watson K (1994) Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiol 140:576–596

    Google Scholar 

  44. Switala J, Loewen PC (2002) Diversity of properties among catalases. Arch Biochem Biophys 401:145–154

    Article  PubMed  CAS  Google Scholar 

  45. Tanghe A, Prior B, Thevelein JM (2006) Yeast responses to stress. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 175–195

    Chapter  Google Scholar 

  46. Thome PE, Trench RK (1999) Osmoregulation and the genetic induction of glycerol-3-phosphate dehydrogenase by NaCl in the euryhaline yeast Debaryomyces hansenii. Mar Biotechnol 1:230–238

    Article  PubMed  CAS  Google Scholar 

  47. Thome-Ortiz PE, Peña A, Ramirez J (1998) Monovalent cation fluxes and physiological changes of Debaryomyces hansenii grown at high concentrations of KCl and NaCl. Yeast 14:1355–1371

    Article  PubMed  CAS  Google Scholar 

  48. Toledano M, Delaunay A, Biteau B et al (2003) Oxidative stress responses in yeast. In: Hohmann S, Mager WH (eds) Topics current genetics, vol 1. Springer, Berlin, pp 241–303

    Google Scholar 

  49. Trindade H, Karmali A, Pais MS (1988) One-step purification and properties of catalase from leaves of Zandedeschia aetgiopica. Biochimie 70:1759–1763

    Article  PubMed  CAS  Google Scholar 

  50. Woodbury W, Spencer AK, Stahman MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305

    Article  PubMed  CAS  Google Scholar 

  51. Xolalpa W, Vallecillo AJ, Lara M et al (2007) Identification of novel bacterial plasminogen-binding proteins in the human pathogen Mycobacterium tuberculosis. Proteomics 7:3332–3341

    Article  PubMed  CAS  Google Scholar 

  52. Zimniak P, Hartter E, Woloszczuk W, Ruis H (1976) Catalase biosynthesis in yeast: formation of catalase A and catalase T during oxygen adaptation of Saccharomyces cerevisiae. Eur J Biochem 71:393–398

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are deeply indebted with the advices of René Cárdenas throughout the work, of Facultad de Ciencias, UNAM and to the technical assistance of Cristina Aranda and Pablo Rangel, from Instituto de Fisiología Celular, and Alfonso Vilchis of Facultad de Ciencias, UNAM. We are grateful to L. Ongay and M. Mora (Unidad de Biología Molecular, Instituto de Fisiología Celular, UNAM) for the synthesis of deoxyoligonucleotides. Claudia Segal-Kischinevzky is grateful to the Posgrado en Ciencias Biológicas, UNAM, for the support during PhD studies. This work was supported partially by the Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (IN241602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Alba-Lois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segal-Kischinevzky, C., Rodarte-Murguía, B., Valdés-López, V. et al. The Euryhaline Yeast Debaryomyces hansenii has Two Catalase Genes Encoding Enzymes with Differential Activity Profile. Curr Microbiol 62, 933–943 (2011). https://doi.org/10.1007/s00284-010-9806-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9806-z

Keywords

Navigation