Skip to main content

Advertisement

Log in

Characterization of Urease and Carbonic Anhydrase Producing Bacteria and Their Role in Calcite Precipitation

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Urease and carbonic anhydrase (CA) are key enzymes in the chemical reaction of living organisms and have been found to be associated with calcification in a number of microorganisms and invertebrates. Three bacterial strains designated as AP4, AP6, and AP9 were isolated from highly alkaline soil samples using the enrichment culture technique. On the basis of various physiological tests and 16S rRNA sequence analysis, these three bacteria were identified as Bacillus sp., B. megaterium, and B. simplex. Further, these Bacillus species have been characterized for the production of urease and CA in the process of biocalcification. One of the isolates, AP6 produced 553 U/ml of urease and 5.61 EU/ml CA. All the strains were able to produce significant amount of exopolymeric substances and biofilm. Further, efficacy of these strains was tested for calcite production ability and results were correlated with urease and CA. Isolate AP6 precipitated 2.26 mg calcite/cell dry mass (mg). Our observations strongly suggest that it is not only urease but CA also plays an important role in microbially induced calcium carbonate precipitation process. The current work demonstrates that urease and CA producing microbes can be utilized in biocalcification as a sealing agent for filling the gaps or cracks and fissures in constructed facilities and natural formations alike.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Achal V, Mukherjee A, Basu PC, Reddy MS (2009) Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J Ind Microbiol Biotechnol 36:981–988

    Article  PubMed  CAS  Google Scholar 

  2. Achal V, Mukherjee A, Basu PC, Reddy MS (2009) Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J Ind Microbiol Biotechnol 36:433–438

    Article  PubMed  CAS  Google Scholar 

  3. Adler L, Brundell J, Falkbring SO, Nyman PO (1972) Carbonic anhydrase from Nisseria sicca strain 6021. Bacterial growth and purification of enzyme. Biochemica et Biophysica Acta 284:313–323

    Google Scholar 

  4. Akaike H (1981) Likelihood of a model and information criteria. J Econ 16:3–14

    Google Scholar 

  5. Altschul SF, Madden TL, Schaffer AA, Zhang S, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  6. Aono R, Ito M, Machida T (1999) Contribution of cell wall component teichuronopeptide to pH homeostasis and alkaliphily in the alkaliphile Bacillus lentus C-125. J Bacteriol 181:6600–6606

    PubMed  CAS  Google Scholar 

  7. Beveridge TJ, Fyfe WS (1985) Metal fixation by bacterial cell walls. Can J Earth Sci 22:1893–1898

    CAS  Google Scholar 

  8. Braus-Stromeyer S, Schnappauf G, Braus GH, Gobner A, Drake HL (1997) Carbonic anhydrase in Acetobacterium woodii and other acetogenic bacteria. J Bacteriol 179:7197–7200

    PubMed  CAS  Google Scholar 

  9. Burne RA, Chen RE (2001) Bacterial ureases in infectious diseases. Microbes Infect 2:533–542

    Article  Google Scholar 

  10. Burne RA, Marquis RE (2000) Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett 193:1–6

    Article  PubMed  CAS  Google Scholar 

  11. Charles HP, Roberts (1968) Carbon dioxide as a growth factor for mutants of E. coli. J Gen Microbiol 51:211–224

    PubMed  CAS  Google Scholar 

  12. Dean CR, Ward OP (1992) The use of EDTA or polymixin with lysozyme for the recovery of intracellular products from Eschericia coli. Biotechnol Tech 6:133–138

    Article  CAS  Google Scholar 

  13. Friedman LE, de Passerini Rossi BN, Messina MT, Franco MA (2001) Phenotype evaluation of Bordetella bronchiseptica cultures by urease activity and congo red affinity. Lett Appl Microbiol 33:285–290

    Article  PubMed  CAS  Google Scholar 

  14. Gordon RE, Haynes WC, Pang CH (1973) The Genus Bacillus. US Dep Agric. Handbook, Washington, p 427

    Google Scholar 

  15. Kantzas A, Ferris FG, Stehmeier L, Marentette DF, Jha KN, Mourits FM (1992) A novel method of sand consolidation through bacteriogenic mineral plugging (CIM 92-46). In: Proceedings of the CIM annual technical conference, vol 2. Petroleum Society of CIM, Calgary, Canada, pp 1–15

  16. Kawaguchi T, Decho AW (2002) A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. J Cryst Growth 240:230–235

    Article  CAS  Google Scholar 

  17. Kishino H, Hasegawa M (1989) Evolution of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order of Hominoidea. J Mol Evol 29:170–179

    Article  PubMed  CAS  Google Scholar 

  18. Li W, Liu LP, Cao L, Yu LJ (2009) Research status and prospect of biological precipitation of carbonate. Adv Earth Sci 24:597–605

    Google Scholar 

  19. Lowry OH, Rosenbrough NJ, Forr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  20. McConnaughey TA, Whelan FF (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci Rev 42:95–117

    Article  CAS  Google Scholar 

  21. Nylander JAA (2004) MrModeltest, version 2.3. Available from http://www.abc.se/~nylander/

  22. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  23. Park IS, Hausinger RP (1995) Requirement of carbon dioxide for in vitro assembly of urease nickel metallocenter. Science 267:1156–1158

    Article  PubMed  CAS  Google Scholar 

  24. Qian C, Wang R, Cheng L, Wang J (2010) Theory of microbial carbonate precipitation and its application in restoration of cement-based materials defects. Chin J Chem 28:847–857

    Article  CAS  Google Scholar 

  25. Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using microorganisms. ACI Mater J 98:3–9

    CAS  Google Scholar 

  26. Rambaut A, Drummond AJ (2007) Tracer—MCMC Trace Analysis Tool Version v1.4. Available from http://beast.bio.ed.ac.uk/Tracer

  27. Rivadeneyra MA, Delgado G, Ramos-Cormenzana A, Delgado R (1998) Biomineralization of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. Res Microbiol 149:277–287

    Article  PubMed  CAS  Google Scholar 

  28. Ronquist F, Heulsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  29. Sharma A, Bhattacharya A, Pujari R, Shrivastava A (2008) Characterization of carbonic anhydrase from diversified genus for biomimetic carbon-dioxide sequestration. Indian J Microbiol 48:365–371

    Article  CAS  Google Scholar 

  30. Sharma A, Pandey A, Shouche YS, Kumar B, Kulkarni G (2009) Characterization and identification of Geobacillus spp. isolated from Soldhar hot spring site of Garhwal Himalaya, India. J Basic Microbiol 49:187–194

    Article  PubMed  CAS  Google Scholar 

  31. Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366

    Article  PubMed  CAS  Google Scholar 

  32. Smith KS, Zakubzick C, Whittam TS, Ferry JG (1999) Carbonic anhydrase is an ancient enzyme wide spread in prokaryotes. Proc Natl Acad Sci USA 96:15184–15189

    Article  PubMed  CAS  Google Scholar 

  33. Stahler MF, Ganter L, Katherin L, Manfred K, Stephen B (2005) Mutational analysis of Helicobacter pylori carbonic anhydrases. FEMS Immunol Med Microbiol 44:183–189

    Article  PubMed  Google Scholar 

  34. Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31:1563–1571

    Article  CAS  Google Scholar 

  35. Tsuneda S, Jung J, Hayashi H, Aikawa H, Hirata A, Sasaki H (2003) Influence of extracellular polymers on electrokinetic properties of heterotrophic bacterial cells examined by soft particle electrophoresis theory. Colloid Surf B 29:181–188

    Article  CAS  Google Scholar 

  36. Wilbur KM, Anderson NG (1948) Electrometric and colorimetric determination of carbonic anhydrase. J Biol Chem 176:147–154

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Knowledge Innovation Program of Chinese Academy of Sciences (KZCX2-YW-335), Program of 100 Distinguished Young Scientists of the Chinese Academy of Sciences and National Natural Science Foundation of China (40673070, 40872169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varenyam Achal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achal, V., Pan, X. Characterization of Urease and Carbonic Anhydrase Producing Bacteria and Their Role in Calcite Precipitation. Curr Microbiol 62, 894–902 (2011). https://doi.org/10.1007/s00284-010-9801-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9801-4

Keywords

Navigation