Current Microbiology

, Volume 62, Issue 3, pp 710–714 | Cite as

Paracoccus beibuensis sp. nov., Isolated from the South China Sea

  • Qiang Zheng
  • Yanan Wang
  • Chuang Chen
  • Yu Wang
  • Xiaomin Xia
  • Yingnan Fu
  • Rui Zhang
  • Nianzhi Jiao


A Gram-negative, non-motile, short rod-shaped or spherical bacterial strain that accumulates poly-β-hydroxybutyrate (PHB) granules was isolated from the Beibu Gulf in the South China Sea. Cells have no polar or subpolar flagella, dividing by binary fission. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain formed a monophyletic branch at the periphery of the evolutionary radiation occupied by the genus Paracoccus, family Rhodobacteraceae, order Rhodobacterales, class Alphaproteobacteria. The closest neighbours were Paracoccus aestuarii strain B7T (97.2% similarity), Paracoccus zeaxanthinifaciens ATCC 21588T (97.1% similarity) and Paracoccus homiensis DD-R11T (96.8%). The predominant fatty acids were C18:1 ω7c (82.1%), and significant amounts of C18:0 (5.6%), C10:0 3-OH (2.3%) and C16:0 (1.5%) were present. The predominant respiratory ubiquinone of strain JLT1284T was Q-10 and the DNA G+C content of strain JLT1284T was 67.0 mol%. The isolate was also distinguishable from members of the genus Paracoccus on the basis of phenotypic and biochemical characteristics. It is evident from the genotypic, chemotaxonomic and phenotypic data, therefore, that strain JLT1284T represents a novel species of the genus Paracoccus, for which the name Paracoccus beibuensis sp. nov. is proposed. The type strain is JLT1284T (=LMG 24871T = CGMCC 1.7295T).


Astaxanthin Cellular Fatty Acid Isoprenoid Quinone Predominant Fatty Acid ATCC 21588T 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Professor Shuang-jiang Liu, Institute of Microbiology, Chinese academy of Science and China General Microbiological Culture Collection Center for their valuable help. This work was supported by the MOST project (2007CB815900), the NSFC projects (40632013), the SOA project (200805068).


  1. 1.
    Andrews JM (2008) BSAC standardized disc susceptibility testing method (Version 7). J Antimicrob Chemother 62:256–278PubMedCrossRefGoogle Scholar
  2. 2.
    Barritt MM (1936) The intensification of the Voges–Proskauer reaction by the addition of a-naphthol. J Pathol Bacteriol 42:441–445CrossRefGoogle Scholar
  3. 3.
    Berry A, Janssens D, Hümbelin M et al (2003) Paracoccus zeaxanthinifaciens sp. nov., a zeaxanthin-producing bacterium. Int J Syst Evol Microbiol 53:231–238 10 other authorsPubMedCrossRefGoogle Scholar
  4. 4.
    Clarke PH (1953) Hydrogen sulphide production by bacteria. J Gen Microbiol 8:397–407PubMedGoogle Scholar
  5. 5.
    Davis DH, Doudoroff M, Stanier RY, Mandel M (1969) Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 19:375–390CrossRefGoogle Scholar
  6. 6.
    Dong X-Z, Cai M-Y (2001) Determinative manual for routine bacteriology. Scientific Press, PekingGoogle Scholar
  7. 7.
    Embley TM (1991) The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 13:171–174PubMedCrossRefGoogle Scholar
  8. 8.
    Fraser SL, Jorgensen JH (1997) Reappraisal of the antimicrobial susceptibilities of Chtyseobacterium and Flavobacterium species and methods for reliable susceptibility testing. Antimicrob Agents Chemother 41:2738–2741PubMedGoogle Scholar
  9. 9.
    Harker M, Hirschberg J, Oren A (1998) Paracoccus marcusii sp. nov., an orange Gram-negative coccus. Int J Syst Bacteriol 48:543–548PubMedGoogle Scholar
  10. 10.
    Hirashi A, Ueda Y, Ishihara J (1998) Quinone profiling of bacterial communities in natural and synthetic sewage activated sludge for enhanced phosphate removal. Appl Environ Microbiol 64:992–998Google Scholar
  11. 11.
    Johnson JL (1994) Similarity analysis of DNAs. In: Gerhardt PE, Murray RG, Wood WA, Krieg NR (eds) Method for general and molecular bacteriology. American Society for Microbiology Press, Washington, DC, pp 655–681Google Scholar
  12. 12.
    Kim B-Y, Weon H-Y, Yoo S-H, Kwon S-W, Cho Y-H, Stackebrandt E, Go S-J (2006) Paracoccus homiensis sp. nov., isolated from a sea-sand sample. Int J Syst Evol Microbiol 56:2387–2390PubMedCrossRefGoogle Scholar
  13. 13.
    Kim Y-O, Kong HJ, Park S, Kang S-J, Kim K-K, Moon DY, Oh T-K, Yoon J-H (2010) Paracoccus fistulariae sp. nov., a lipolytic bacterium isolated from bluespotted cornetfish, Fistularia commersonii. doi: 10.1099/ijs.0.021808-0
  14. 14.
    Komagata K, Suzuki K (1987) Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–206CrossRefGoogle Scholar
  15. 15.
    Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment briefings. Bioinformatics 5:150–163PubMedGoogle Scholar
  16. 16.
    Lee JH, Kim YS, Choi T-J, Lee WJ, Kim YT (2004) Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium. Int J Syst Evol Microbiol 54:1699–1702PubMedCrossRefGoogle Scholar
  17. 17.
    Mandel M, Igambi L, Bergenda J, Dodson ML, Scheltge E (1970) Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J Bacteriol 101:333–338PubMedCrossRefGoogle Scholar
  18. 18.
    Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218CrossRefGoogle Scholar
  19. 19.
    Mata JA, Martínez-Cánovas J, Quesada E, Béjar V (2002) A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375PubMedCrossRefGoogle Scholar
  20. 20.
    Roh SW, Nam Y-D, Chang H-W, Kim K-H, Kim M-S, Shin K-S, Yoon J-H, Oh H-M, Bae J-W (2009) Paracoccus aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 59:790–794PubMedCrossRefGoogle Scholar
  21. 21.
    Romano I, Lama L, Nicolaus B, Poli A, Gambacorta A, Giordano A (2006) Halomonas alkaliphila sp. nov., a novel halotolerant alkaliphilic bacterium isolated from a salt pool in Campania (Italy). J Gen Appl Microbiol 52:339–348PubMedCrossRefGoogle Scholar
  22. 22.
    Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular microbiology. American Society for Microbiology, Washington, DC, pp 611–654Google Scholar
  23. 23.
    Wang Y, Tang S-K, Lou K, Mao P-H, Jin X, Jiang C-L, Xu L-H, Li W-J (2009) Paracoccus saliphilus sp. nov., a halophilic bacterium isolated from a saline soil. Int J Syst Evol Microbiol 59:1924–1928PubMedCrossRefGoogle Scholar
  24. 24.
    Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813PubMedGoogle Scholar
  25. 25.
    Yurkov VV, Krieger S, Stackebrandt E, Beatty JT (1999) Citromicrobium bathyomarinum, a novel aerobic bacterium isolated from deep-sea hydrothermal vent plume waters that contains photosynthetic pigment–protein complexes. J Bacteriol 181(15):4517–4525PubMedGoogle Scholar
  26. 26.
    Zumft WG (1992) The denitrifying bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, application. Springer Verlag Press, New York, pp 554–582Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Qiang Zheng
    • 1
  • Yanan Wang
    • 1
    • 2
  • Chuang Chen
    • 1
  • Yu Wang
    • 1
  • Xiaomin Xia
    • 1
  • Yingnan Fu
    • 1
  • Rui Zhang
    • 1
  • Nianzhi Jiao
    • 1
  1. 1.State Key Laboratory of Marine Environmental ScienceXiamen UniversityXiamenPeople’s Republic of China
  2. 2.Key Laboratory of Microbial Engineering at the Institute of BiologyHenan Academy of SciencesZhengzhouPeople’s Republic of China

Personalised recommendations