Skip to main content
Log in

Localization and Characterization of GTP-Binding Protein CT703 in the Chlamydia trachomatis-Infected Cells

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

To localize and characterize the GTP-binding protein encoded by the chlamydial ORF CT703 in the Chlamydia trachomatis-infected cells, the gene coding for CT703 in the Chlamydia trachomatis serovar L2 genome was cloned into the prokaryotic expression vector pGEX and expressed as GST fusion protein in the E. coli BL21 strain. The GST-CT703 fusion protein was purified and used to raise antigen-specific antibodies. Using the anti-fusion protein antibodies, we localized the endogenous CT703 protein inside the chlamydial inclusion using an indirect immunofluorescence assay (IFA). We also detected a significantly decreased level of CT703 in cultures that were induced to undergo persistent infection. These observations suggest that CT703 may be an important regulator for promoting chlamydial productive infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Askienazy-Elbharl M, Henry-Suchet J (1999) Persistent “Silent” Chlamydia trachomatis female genital tract infections. Infections Dis Obstet Gynecol 7:31–34

    Google Scholar 

  2. Beatty WL, Byrne GI, Morrison RP (1993) Morphologic and antigenic characterization of interferon γ-mediated persistent Chlamydia trachomatis infection in vitro. Proc Natl Acad Sci USA 90:3998–4002

    Article  CAS  PubMed  Google Scholar 

  3. Beatty WL, Morrison RP et al (1994) Immunoelectron-microscopic quantitation of differential levels of chlamydial proteins in a cells culture model of persistent Chlamydia trachomatis infection. Infect Immun 62:4059–4062

    CAS  PubMed  Google Scholar 

  4. Belland RJ, David E, Virok D et al (2003) Transcription analysis of chlamydial growth IFN-γ-mediated persistence and reactivation. PNAS 100:15971–15976

    Article  CAS  PubMed  Google Scholar 

  5. Carabeo RA, Mead DJ, Hackstadt T (2003) Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. PNAS 100:6771–6776

    Article  CAS  PubMed  Google Scholar 

  6. Chen CQ, Chen D, Sharma J et al (2006) The hypothetical protein CT813 is localized in the Chlamydia trachomatis inclusion membrane and is immunogenic in women urogenitally infected with C. trachomatis. Infect Immun 74:4826–4840

    Article  CAS  PubMed  Google Scholar 

  7. Fan T, Lu H, Hu H et al (1998) Inhibition of apoptosis in Chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med 187:487–496

    Article  CAS  PubMed  Google Scholar 

  8. Hackstadt T (1998) The diverse habitats of obligate intracellular parasites. Curr Opin Microbiol 1:82–87

    Article  CAS  PubMed  Google Scholar 

  9. Hackstadt T, Scidmore MA, DRockey D (1995) Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. PNAS 92:4877–4881

    Article  CAS  PubMed  Google Scholar 

  10. Hackstadt T, Rockey DD, Heinzen RA et al (1996) Chiamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J 15:964–977

    CAS  PubMed  Google Scholar 

  11. Hackstadt T, Fischer ER, Scidmore MA et al (1997) Origins and functions of the chlamydial inclusion. Trends Microbiol 5:288–293

    Article  CAS  PubMed  Google Scholar 

  12. Hybiske K, Stephens RS (2007) Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc Natl Acad Sci USA 104:11430–11435

    Article  CAS  PubMed  Google Scholar 

  13. Kuipers JG, Zeidler H, Kohler L (2003) How does Chlamydia cause arthritis? Rheum Dis Clin North Am 29:613–629

    Article  PubMed  Google Scholar 

  14. Pinkerton SD, Layde PM, For the NIMH multisite HIV prevention trial group (2002) Using sexually transmitted disease incidence as a surrogate marker for HIV incidence in prevention trials: a modeling study. Sex Transm Dis 29:298–307

    Article  PubMed  Google Scholar 

  15. Polkinghorn A, Hogan RJ, Vaughan L et al (2006) Differential expression of chlamydial signal transduction genes in normal and interferon gamma-induced persistent Chlamydophila pneumoniae infections. Microbes Infect 8:61–72

    Article  Google Scholar 

  16. Rzomp KA, Scholtes LD, Briggs BJ et al (2003) Rab GTPases are recruited to Chlamydial inclusions in both a species-dependent and species-independent manner. Infect Immun 71:5855–5870

    Article  CAS  PubMed  Google Scholar 

  17. Sambrook J, Ruessell DW (2002) Molecular cloning: a laboratory manual, 3rd edn. Science Press, Beijing, pp 1217–1265

    Google Scholar 

  18. Scidmore MA, Fischer ER, Hackstadt T (1996) Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J Cell Biol 134:363–374

    Article  CAS  PubMed  Google Scholar 

  19. Scidmore MA, Fischer ER, Hackstadt T (2003) Restricted fusion of Chlamydia trachomatis vesicles with endocytic compartments during the initial stages of infection. Infect Immun 71:973–984

    Article  CAS  PubMed  Google Scholar 

  20. Sherman KJ, Daling JR, Stergachis A et al (1990) Sexually transmitted diseases and tubal pregnancy. Sex Transm Dis 17:115–121

    Article  CAS  PubMed  Google Scholar 

  21. Stephens RS, Kalman S, Lammel C et al (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754–759

    Article  CAS  PubMed  Google Scholar 

  22. Su H, McClarty G, Dong F et al (2004) Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for Chlamydia acquisition of host glycerophomatis. J Biol Chem 279:9409–9416

    Article  CAS  PubMed  Google Scholar 

  23. Taylor HR, Johnson SL, Schachter J et al (1987) Pathogenesis of trachoma: the stimulus for inflammation. J Immunol 138:3023–3027

    CAS  PubMed  Google Scholar 

  24. Wallin KL, Wiklund F, Luostarinen T et al (2002) A population-based prospective study of Chlamydia trachomatis infection and cervical carcinoma. Int J Cancer 101:371–374

    Article  CAS  PubMed  Google Scholar 

  25. Xiao Y, Zhong Y, Greene W et al (2004) Chlamydia trachomatis infection inhibits both Bax and Bak activation induced by staurosporine. Infect Immun 72:5470–5474

    Article  CAS  PubMed  Google Scholar 

  26. Zhong G, Fan P, Ji H et al (2001) Identification of a Chlamydial protease-like activity factor responsible for the degradation of host transcription factor. J Exp Med 193:935–942

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Supported by the National Natural Science Foundation of China (Grand No. 30600534).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Yu.

Additional information

Kun Du and FuYan Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, K., Wang, F., Huo, Z. et al. Localization and Characterization of GTP-Binding Protein CT703 in the Chlamydia trachomatis-Infected Cells. Curr Microbiol 62, 465–471 (2011). https://doi.org/10.1007/s00284-010-9730-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9730-2

Keywords

Navigation