Skip to main content
Log in

Short-Term UV-B and UV-C Radiations Preferentially Decrease Spermidine Contents and Arginine Decarboxylase Transcript Levels of Synechocystis sp. PCC 6803

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

To investigate the short term effect of ultraviolet (UV) radiations on changes in pigments and polyamine contents, Synechocystis sp. PCC 6803 cells after exposure to UV-radiation were extracted by dimethylformamide and perchloric acid for pigments and polyamines determination, respectively. Cell growth was slightly decreased after 1 h exposure to UV-A and UV-B radiations. UV-C had little effect on cell growth despite the decrease of photosynthetic rate by about 18%. UV-A and UV-B decreased the contents of chlorophyll a and carotenoids whereas UV-C decreased chlorophyll a but had no effect on carotenoids. Spermidine contents were unaffected by UV-A, in contrast to the reduction of 25 and 50% by UV-B and UV-C, respectively. All three types of UV-radiation particularly reduced perchloric acid-insoluble spermidine. Importantly, putrescine and spermine which accounted for less than 1% of intracellular polyamines were increased by about three- to eight-fold by UV-B and UV-C, respectively. The changes in polyamines contents by UV-B and UV-C were consistent with the changes in transcript levels of arginine decarboxylase mRNA, but not with the protein levels. The decrease in the transcripts of adc2 but not adc1 was observed with UV-B and UV-C treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADC:

Arginine decarboxylase

PCA:

Perchloric acid

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

UV:

Ultraviolet

References

  1. Bank HL, John J, Schmehl MK et al (1990) Bactericidal effectiveness of modulated UV light. Appl Environ Microbiol 56:3888–3889

    CAS  PubMed  Google Scholar 

  2. Barbato R, Bergo E, Szabò I et al. (2000) Ultraviolet B exposure of whole leaves of barley affects structure and functional organization of photosystem II. J Biol Chem 275:10976–10982

    Google Scholar 

  3. Bavcon J, Gaberščik A, Batič F (1996) Influence of UV-B radiation on photosynthetic activity and chlorophyll fluorescence kinetics in Norway spruce [Picea abies (L.) Karst.] seedlings. Trees 10:172–176

    Google Scholar 

  4. Borrell A, Culiañez-Macià FA, Altabella T et al (1995) Arginine decarboxylase is localized in chloroplasts. Plant Physiol 109:771–776

    CAS  PubMed  Google Scholar 

  5. Bouchereau A, Aziz A, Larher F et al (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  6. Brandle JR, Campbell WF, Sisson WB et al (1977) Net photosynthesis, electron transport capacity, and ultrastructure of Pisum sativum L. exposed to ultraviolet-B radiation. Plant Physiol 60:165–169

    Article  CAS  PubMed  Google Scholar 

  7. Brandt AM, Raksajit W, Yodsang P et al. (2010) Characterization of the substrate-binding PotD subunit in Synechocystis sp. strain PCC 6803. Arch Microbiol (in press)

  8. Caldwell MM, Teramura AH, Tevini M (1989) The changing solar ultraviolet climate and the ecological consequences for higher plants. Trends Ecol Evol 4:363–367

    Article  Google Scholar 

  9. Chamovitz D, Sandmann G, Hirschberg J (1993) Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. J Biol Chem 268:17348–17353

    CAS  PubMed  Google Scholar 

  10. Cullen JJ, Neale PJ, Lesser MP (1992) Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 258:646–650

    Article  CAS  PubMed  Google Scholar 

  11. Evans PT, Malmberg RL (1989) Do polyamines have roles in plant development? Annu Rev Plant Physiol Plant Mol Biol 40:235–529

    CAS  Google Scholar 

  12. Galston AW, Kaur-Sawhney R (1995) Polyamines as endogenous growth regulators. In: Davies PJ (ed) Plant hormones: physiology, biochemistry, and molecular biology. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 158–178

    Google Scholar 

  13. Garcia-Jimenez P, Rodrigo M, Robaina RR (1998) Influence of plant growth regulators, polyamines and glycerol interaction on growth and morphogenesis of carposporelings of Grateloupia cultured in vitro. J Appl Phycol 10:95–100

    Article  CAS  Google Scholar 

  14. Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    Article  CAS  PubMed  Google Scholar 

  15. Ha HC, Sirisoma NS, Kuppusamy P et al (1998) The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci USA 95:11140–11145

    Article  CAS  PubMed  Google Scholar 

  16. He Y-Y, Häder D-P (2002) Reactive oxygen species and UV-B: effect on cyanobacteria. Photochem Photobiol Sci 1:729–736

    Article  CAS  PubMed  Google Scholar 

  17. Incharoensakdi A, Jantaro S, Raksajit W et al (2010) Polyamines in cyanobacteria: biosynthesis, transport and abiotic stress response. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Microbiology book series, Formatex, Spain (in press)

  18. Ioannidis NE, Ortigosa SM, Veramendi J et al (2009) Remodeling of tobacco thylakoids by over-expression of maize plastidial transglutaminase. Biochim Biophys Acta 1787:1215–1222

    Article  CAS  PubMed  Google Scholar 

  19. Jantaro S, Incharoensakdi A, Jansén T et al (2005) Effects of long-term ionic and osmotic stress conditions on photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Funct Plant Biol 32:807–815

    Article  CAS  Google Scholar 

  20. Jantaro S, Mäenpää P, Mulo P et al (2003) Content and biosynthesis of polyamines in salt and osmotically stressed cells of Synechocystis sp. PCC 6803. FEMS Microbiol Lett 228:129–135

    Article  CAS  PubMed  Google Scholar 

  21. Jürgens U, Golecki JR, Weckesser J (1985) Characterization of the cell wall of the unicellular cyanobacterium Synechocystis PCC 6714. Arch Microbiol 142:168–174

    Article  Google Scholar 

  22. Kim D-S, Watanabe Y (1993) The effect of long wave ultraviolet radiation (UV-A) on the photosynthetic activity of natural population of freshwater phytoplankton. Ecol Res 8:225–234

    Article  Google Scholar 

  23. Lütz C, Navakoudis E, Seidlitz HK et al (2005) Simulated solar irradiation with enhanced UV-B adjust plastid- and thylakoid-associated polyamine changes for UV-B protection. Biochim Biophys Acta 1710:24–33

    Article  PubMed  Google Scholar 

  24. McFarland M, Kaye J (1992) Chlorofluorocarbons and ozone. Photochem Photobiol 55:911–929

    Article  CAS  PubMed  Google Scholar 

  25. Mohamed A, Jansson C (1989) Influence of light in accumulation of photosynthesis-specific transcripts in the cyanobacterium Synechocystis 6803. Plant Mol Biol 13:693–700

    Article  CAS  PubMed  Google Scholar 

  26. Moran R (1982) Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. Plant Physiol 69:1376–1381

    Article  CAS  PubMed  Google Scholar 

  27. Rahmatzadeh S, Khara J (2007) Anatomical and morphological changes caused by interaction between UV-C radiation and colonized wheat by some species of arbuscular mycorrhizas. J Biol Sci 7:1001–1004

    Article  Google Scholar 

  28. Regunathan S, Reis DJ (2000) Characterization of arginine decarboxylase in rat brain and liver: distinction from ornithine decarboxylase. J Neurochem 74:2201–2208

    Article  CAS  PubMed  Google Scholar 

  29. Raksajit W, Mäenpää P, Incharoensakdi A (2006) Putrescine transport in a cyanobacterium Synechocystis sp. PCC 6803. J Biochem Mol Biol 39:394–399

    CAS  PubMed  Google Scholar 

  30. Redmond JW, Tseng A (1979) High-pressure liquid chromatographic determination of putrescine, cadaverine, spermidine and spermine. J Chromatogr 170:479–481

    Article  CAS  Google Scholar 

  31. Ries G, Buchholz G, Frohnmeyer H et al (2000) UV-damage mediated induction of homologous recombination in Arabidopsis is dependent on photosynthetically active radiation. Proc Natl Acad Sci USA 97:13425–13429

    Article  CAS  PubMed  Google Scholar 

  32. Rinalducci S, Hideg É, Vass I et al (2006) Effect of moderate UV-B irradiation on Synechocystis PCC 6803 biliproteins. Biochem Biophys Res Commun 341:1105–1112

    Article  CAS  PubMed  Google Scholar 

  33. Santos I, Fidalgo F, Almeida JM et al (2004) Biochemical and ultrastructural changes in leaves of potato plants grown under supplementary UV-B radiation. Plant Sci 167:925–935

    Article  CAS  Google Scholar 

  34. Sfichi L, Ioannidis N, Kotzabasis K (2004) Thylakoid-associated polyamines adjust the UV-B sensitivity of the photosynthetic apparatus by means of light-harvesting complex II changes. Photochem Photobiol 80:499–506

    CAS  PubMed  Google Scholar 

  35. Sfichi-Duke L, Ioannidis NE, Kotzabasis K (2008) Fast and reversible response of thylakoid-associated polyamines during and after UV-B stress: a comparative study of the wild type and a mutant lacking chlorophyll b of unicellular green alga Scenedesmus obliquus. Planta 228:341–353

    Article  CAS  PubMed  Google Scholar 

  36. Shimizu N, Hosogi N, Hyon G-S et al (2006) Reactive oxygen species (ROS) generation and ROS-induced lipid peroxidation are associated with plasma membrane modifications in host cells in response to AK-toxin I from Alternaria alternata Japanese pear pathotype. J Gen Plant Pathol 72:6–15

    Article  CAS  Google Scholar 

  37. Simpson WR, von Glasow R, Riedel K et al (2007) Halogens and their role in polar boundary-layer ozone depletion. Atmos Chem Phys 7:4375–4418

    Article  CAS  Google Scholar 

  38. Smith JL, Burritt DJ, Bannister P (2000) Shoot dry weight, chlorophyll and UV-B-absorbing compounds as indicators of a plant’s sensitivity to UV-B radiation. Ann Bot 86:1057–1063

    Article  CAS  Google Scholar 

  39. Smith JL, Burritt DJ, Bannister P (2001) Ultraviolet-B radiation leads to a reduction in free polyamines in Phaseolus vulgaris L. Plant Growth Regul 35:289–294

    Article  CAS  Google Scholar 

  40. Sommaruga R, Libkind D, van Broock M et al (2006) Mycosporine-glutaminol-glucoside, a UV-absorbing compound of two Rhodotorula yeast species. Yeast 21:1077–1081

    Article  Google Scholar 

  41. Stapleton AE (1992) Ultraviolet radiation and plants: burning questions. Plant Cell 4:1353–1358

    Article  PubMed  Google Scholar 

  42. Urano K, Yoshiba Y, Nanjo T et al (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun 313:369–375

    Article  CAS  PubMed  Google Scholar 

  43. Voigt J, Deinert B, Bohley P (2000) Subcellular localization and light-dark control of ornithine decarboxylase in the unicellular alga Chlamydomonas reinhardtii. Physiol Plant 108:353–360

    Article  CAS  Google Scholar 

  44. Yamaguchi K, Takahashi Y, Berberich T et al (2006) The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett 580:6783–6788

    Article  CAS  PubMed  Google Scholar 

  45. Yoda H, Yamaguchi Y, Sano H (2003) Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiol 132:1973–1981

    Article  CAS  PubMed  Google Scholar 

  46. Zacchini M, de Agazio M (2004) Spread of oxidative damage and antioxidative response through cell layers of tobacco callus after UV-C treatment. Plant Physiol Biochem 42:445–450

    Article  CAS  PubMed  Google Scholar 

  47. Zhao F, Song C-P, He J et al (2007) Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. Plant Physiol 145:1061–1072

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The ADC antibody was provided by Dr. Nanthika Kongcharoenporn, The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University. This work was supported by TRF-CHE Research Grant for New Scholar, the Thailand Research Fund (TRF) in conjunction with the Commission on Higher Education (CHE), Ministry of Education, Thailand, and start-up fund provided by Chulalongkorn University to S.J. The support from CHE (university staff development consortium) and from the Thai Government Stimulus Package 2 (TKK 2555) under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agriculture (PER FECTA) to A.I. are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aran Incharoensakdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jantaro, S., Pothipongsa, A., Khanthasuwan, S. et al. Short-Term UV-B and UV-C Radiations Preferentially Decrease Spermidine Contents and Arginine Decarboxylase Transcript Levels of Synechocystis sp. PCC 6803. Curr Microbiol 62, 420–426 (2011). https://doi.org/10.1007/s00284-010-9724-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9724-0

Keywords

Navigation