Skip to main content
Log in

Lead-Enhanced Siderophore Production and Alteration in Cell Morphology in a Pb-Resistant Pseudomonas aeruginosa Strain 4EA

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A lead-resistant bacterial strain 4EA from soil contaminated with car battery waste from Goa, India was isolated and identified as Pseudomonas aeruginosa. This lead-resistant bacterial isolate interestingly revealed lead-enhanced siderophore (pyochelin and pyoverdine) production up to 0.5 mM lead nitrate whereas cells exhibit a significant decline in siderophore production above 0.5 mM lead nitrate. The bacterial cells also revealed significant alteration in cell morphology as size reduction when exposed to 0.8 mM lead nitrate. Enhanced production of siderophore was evidently detected by chrome azurol S agar diffusion (CASAD) assay as increase in diameter of orange halo, and reduction in bacterial size along with significant biosorption of lead was recorded by scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDX). Pseudomonas aeruginosa strain 4EA also exhibits cross tolerance to other toxic metals viz. cadmium, mercury, and zinc besides resistance to multiple antibiotics such as ampicillin, erythromycin, amikacin, cephalexin, co-trimoxazole, mecillinam, lincomycin, ciphaloridine, oleondamycin, and nalidixic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Asmub M, Mullenders LHF, Hartwig A (2000) Interference by toxic metal compounds with isolated zinc finger DNA repair proteins. Toxicol Lett 112–113:227–231

    Google Scholar 

  2. Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol 45:493–496

    CAS  PubMed  Google Scholar 

  3. Borremans B, Hobman JL, Provoost A, Brown NL, van der Lelie D (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183:5651–5658

    Article  CAS  PubMed  Google Scholar 

  4. Cameron RE (1992) Guide to site and soil description for hazardous waste characterization, vol I: Metals. Environmental Protection Agency EPA/600/4-91/029. p 250

  5. Chakravarty R, Banerjee PC (2008) Morphological changes in acidophilic bacterium induced by heavy metals. Extremophiles 12:279–284

    Article  CAS  PubMed  Google Scholar 

  6. Clarke SE, Stuart J, Sanders-Loehr J (1987) Induction of siderophore activity in Anabaena sp. and its moderation of copper toxicity. Appl Environ Microbiol 53:917–922

    CAS  PubMed  Google Scholar 

  7. Cox CD, Adams P (1985) Siderophore activity of pyoverdine for Pseudomonas aeruginosa. Infect Immun 48:130–138

    CAS  PubMed  Google Scholar 

  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  9. Gilis A, Corbisier P, Baeyens W, Taghavi S, Mergeay M, van der Lelie D (1998) Effect of the siderophore alcaligin E on the bioavailability of Cd to Alcaligenes eutrophus CH34. J Ind Microbiol Biotechnol 20:61–68

    Article  CAS  PubMed  Google Scholar 

  10. Hartwig A, Asmuss M, Ehleben I, Herzer U, Kostelac D, Pelzer A, Schwerdtle T, Burkle A (2002) Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ Health Perspect 110:797–799

    Article  CAS  PubMed  Google Scholar 

  11. Hepinstall SE, Turner BF, Maurice PA (2005) Effect of siderophores on Pb and Cd adsorption to kaolinite. Clays Clay Miner 53:557–563

    Article  CAS  Google Scholar 

  12. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  13. Konopka A, Zakharova T, Bischoff M, Oliver L, Nakatsu C, Turco RF (1999) Microbial biomass and activity in lead contaminated soil. Appl Environ Microbiol 65:2256–2259

    CAS  PubMed  Google Scholar 

  14. Krieg NR, Holt JG (1984) Bergey’s manual of systematic bacteriology, vol 1. The Williams and Wilkins, Baltimore, USA, pp 140–309

    Google Scholar 

  15. Mergeay M, Nies DH, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    CAS  PubMed  Google Scholar 

  16. Namiranian S, Richardson DJ, Russell DA, Sodeau JR (1997) Excited state properties of siderophore pyochelin and its complex with zinc ions. Photochem Photobiol 65:777–782

    Article  CAS  PubMed  Google Scholar 

  17. Neumann G, Veeranagauda Y, Karegoudar TB, Sahin O, Mausezahl I, Kabelitz N, Kappelmeyer U, Heipieper HJ (2005) Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles 9:163–168

    Article  CAS  PubMed  Google Scholar 

  18. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  PubMed  Google Scholar 

  19. Pandey P, Kang SC, Gupta CP, Maheshwari DK (2005) Rhizosphere competent Pseudomonas aeruginosa GRC1 produces characteristic siderophore and enhances growth of Indian mustard (Brassica campestris). Current Microbiol 51:303–309

    Article  CAS  PubMed  Google Scholar 

  20. Roane TM (1999) Lead resistance in two bacterial isolates from heavy metal-contaminated soils. Microb Ecol 37:218–224

    Article  CAS  PubMed  Google Scholar 

  21. Rossbach S, Wilson TL, Kukuk ML, Carty HA (2000) Elevated zinc induces siderophore biosynthesis genes and a zntA-like gene in Pseudomonas fluorescens. FEMS Microbiol Lett 191:61–70

    Article  CAS  PubMed  Google Scholar 

  22. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  23. Sengar RS, Pandey M (1996) Inhibition of chlorophyll biosynthesis by lead in greening Pisum sativum leaf segment. Biol Plant 38:459–462

    Article  CAS  Google Scholar 

  24. Shin SH, Lim Y, Lee SE, Yang NW, Rhee JH (2001) CAS agar diffusion assay for the measurement of siderophores in biological fluids. J Microbiol Method 44:89–95

    Article  CAS  Google Scholar 

  25. Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a highly Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Current Microbiol 56:55–60

    Article  CAS  PubMed  Google Scholar 

  26. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Milind Naik gratefully acknowledges U.G.C., Government of India for financial support as JRF. The authors are also thankful to Dr. M. S. Prasad and Mr. Vijay Khedekar from National Institute of Oceanography, Goa, India for scanning electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Dubey.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naik, M.M., Dubey, S.K. Lead-Enhanced Siderophore Production and Alteration in Cell Morphology in a Pb-Resistant Pseudomonas aeruginosa Strain 4EA. Curr Microbiol 62, 409–414 (2011). https://doi.org/10.1007/s00284-010-9722-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9722-2

Keywords

Navigation