Skip to main content

Advertisement

Log in

Effect of the Antimicrobial Peptide Tritrpticin on the In Vitro Viability and Growth of Trichomonas vaginalis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Antimicrobial peptides are widely distributed in nature; they play important roles in several aspects of innate immunity and may provide a basis for the design of novel therapeutic agents. In this study, C-amidated tritrpticin, a 13 amino acid tryptophan-rich antimicrobial peptide derived from a porcine cathelicidin, was tested against Trichomonas vaginalis, a protozoan that causes a serious non-viral sexually transmitted disease associated with preterm birth, low birth weight, and high risk of HIV-1 infection. Tritrpticin was selected due to its reasonably easy synthesis and because analogs with lower toxicity may be designed. Our results show that tritrpticin-NH2 at either 100 or 200 μg/ml (52.5 or 105 μM) clearly reduces the viability and growth of Trichomonas vaginalis. Together with tritrpticin-NH2, sodium bicarbonate further limited trichomonad growth. Additionally, a low concentration of metronidazole (5.8 μM), the most commonly used medication for Trichomonas vaginalis, was more effective against the growth of the parasite when it was combined with tritrpticin-NH2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AMPs:

Antimicrobial peptides

TYI-S-33:

Complete culture medium with 6% bovine serum

TYI-S-33-b:

Complete culture medium with 25 mM sodium bicarbonate

TYI:

Medium without serum

TYI-bh:

Medium with 25 mM sodium bicarbonate and 100 mM Hepes

MEM-bh:

Minimum essential medium with 25 mM sodium bicarbonate and 100 mM Hepes

References

  1. Anderson RC, Yu PL (2005) Factors affecting the antimicrobial activity of ovine-derived cathelicidins against E. coli 0157:H7. Int J Antimicrob Agents 25:205–210

    Article  CAS  PubMed  Google Scholar 

  2. Casey JR (2006) Why bicarbonate? Biochem Cell Biol 84:930–939

    Article  CAS  PubMed  Google Scholar 

  3. Chan WC, White PD (2000) Basic procedures. In: Chan WC, White PD (eds) FMOC solid phase peptide synthesis: a practical approach. Practical approach series. Oxford University Press, Oxford, pp 41–74

  4. Chernecky CC, Berger BJ (2001) Laboratory tests and diagnostic procedures, 3rd edn. WB Saunders Company, Philadelphia, p 210

    Google Scholar 

  5. Cirioni O, Giacometti A, Silvestri C et al (2006) In vitro activities of tritrpticin alone and in combination with other antimicrobial agents against Pseudomonas aeruginosa. Antimicrob Agents Chemother 50:3923–3925

    Article  CAS  PubMed  Google Scholar 

  6. Cole AM (2006) Innate host defense of human vaginal and cervical mucosae. Curr Top Microbiol Immunol 306:199–230

    Article  CAS  PubMed  Google Scholar 

  7. Cotch MF, Pastorek JG, Nugent RP et al (1997) Trichomonas vaginalis associated with low birth weight and preterm delivery. The Vaginal Infections and Prematurity Study Group. Sex Transm Dis 24:353–360

    Article  CAS  PubMed  Google Scholar 

  8. Cudmore SL, Delgaty KL, Hayward-McClelland SF et al (2004) Treatment of infections caused by metronidazole-resistant Trichomonas vaginalis. Clin Microbiol Rev 17:783–793

    Article  CAS  PubMed  Google Scholar 

  9. Diamond LS, Harlow DR, Cunnick CC (1978) A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Trans R Soc Trop Med Hyg 72:431–432

    Article  CAS  PubMed  Google Scholar 

  10. Diamond G, Beckloff N, Weinberg A et al (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15:2377–2392

    Article  CAS  PubMed  Google Scholar 

  11. Dorschner RA, Lopez-Garcia B, Peschel A et al (2006) The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides. FASEB J 20:35–42

    Article  CAS  PubMed  Google Scholar 

  12. Dunne RL, Dunn LA, Upcroft P et al (2003) Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis. Cell Res 13:239–249

    Article  CAS  PubMed  Google Scholar 

  13. Ghiselli R, Cirioni O, Giacometti A et al (2006) The cathelicidin-derived tritrpticin enhances the efficacy of ertapenem in experimental rat models of septic shock. Shock 26:195–200

    Article  CAS  PubMed  Google Scholar 

  14. Goldman MJ, Anderson GM, Stolzenberg ED et al (1997) Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88:553–560

    Article  CAS  PubMed  Google Scholar 

  15. Kappe O, Mannhold R, Kubinyi H et al (2005) Microwaves in organic and medicinal chemistry. Methods and principles in medicinal chemistry. Wiley, John & Sons, Inc, New York

    Google Scholar 

  16. Laga M, Manoka A, Kivuvu M et al (1993) Non-ulcerative sexually transmitted diseases as risk factors for HIV-1 transmission in women: results from a cohort study. Aids 7:95–102

    Article  CAS  PubMed  Google Scholar 

  17. Lawyer C, Pai S, Watabe M et al (1996) Antimicrobial activity of a 13 amino acid tryptophan-rich peptide derived from a putative porcine precursor protein of a novel family of antibacterial peptides. FEBS Lett 390:95–98

    Article  CAS  PubMed  Google Scholar 

  18. Mason AJ, Moussaoui W, Abdelrahman T et al (2009) Structural determinants of antimicrobial and antiplasmodial activity and selectivity in histidine-rich amphipathic cationic peptides. J Biol Chem 284:119–133

    Article  CAS  PubMed  Google Scholar 

  19. Mutwiri GK, Henk WG, Enright FM et al (2000) Effect of the antimicrobial peptide, D-hecate, on trichomonads. J Parasitol 86:1355–1359

    CAS  PubMed  Google Scholar 

  20. Padilla-Vaca F, Anaya-Velazquez F (1997) Biochemical properties of a neuraminidase of Trichomonas vaginalis. J Parasitol 83:1001–1006

    Article  CAS  PubMed  Google Scholar 

  21. Palffy R, Gardlik R, Behuliak M et al (2009) On the physiology and pathophysiology of antimicrobial peptides. Mol Med 15:51–59

    CAS  PubMed  Google Scholar 

  22. Pan CY, Chen JY, Lin TL et al (2009) In vitro activities of three synthetic peptides derived from epinecidin-1 and an anti-lipopolysaccharide factor against Propionibacterium acnes, Candida albicans, and Trichomonas vaginalis. Peptides 30:1058–1068

    Article  CAS  PubMed  Google Scholar 

  23. Pungercar J, Strukelj B, Kopitar G et al (1993) Molecular cloning of a putative homolog of proline/arginine-rich antibacterial peptides from porcine bone marrow. FEBS Lett 336:284–288

    Article  CAS  PubMed  Google Scholar 

  24. Rivas L, Luque-Ortega JR, Andreu D (2009) Amphibian antimicrobial peptides and Protozoa: lessons from parasites. Biochim Biophys Acta 1788:1570–1581

    Article  CAS  PubMed  Google Scholar 

  25. Robertson DH, Heyworth R, Harrison C et al (1988) Treatment failure in Trichomonas vaginalis infections in females. I. Concentrations of metronidazole in plasma and vaginal content during normal and high dosage. J Antimicrob Chemother 21:373–378

    Article  CAS  PubMed  Google Scholar 

  26. Schibli DJ, Nguyen LT, Kernaghan SD et al (2006) Structure-function analysis of tritrpticin analogs: potential relationships between antimicrobial activities, model membrane interactions, and their micelle-bound NMR structures. Biophys J 91:4413–4426

    Article  CAS  PubMed  Google Scholar 

  27. Schwebke JR, Barrientes FJ (2006) Prevalence of Trichomonas vaginalis isolates with resistance to metronidazole and tinidazole. Antimicrob Agents Chemother 50:4209–4210

    Article  CAS  PubMed  Google Scholar 

  28. Upcroft JA, Upcroft P (2001) Drug susceptibility testing of anaerobic protozoa. Antimicrob Agents Chemother 45:1810–1814

    Article  CAS  PubMed  Google Scholar 

  29. Venkataraman N, Cole AL, Svoboda P et al (2005) Cationic polypeptides are required for anti-HIV-1 activity of human vaginal fluid. J Immunol 175:7560–7567

    CAS  PubMed  Google Scholar 

  30. Vizioli J, Salzet M (2002) Antimicrobial peptides versus parasitic infections? Trends Parasitol 18:475–476

    Article  CAS  PubMed  Google Scholar 

  31. Yang ST, Shin SY, Hahm KS et al (2006) Different modes in antibiotic action of tritrpticin analogs, cathelicidin-derived Trp-rich and Pro/Arg-rich peptides. Biochim Biophys Acta 1758:1580–1586

    Article  CAS  PubMed  Google Scholar 

  32. Yang ST, Shin SY, Hahm KS et al (2006) Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities. Int J Antimicrob Agents 27:325–330

    Article  CAS  PubMed  Google Scholar 

  33. Zhu WL, Lan H, Park Y et al (2006) Effects of Pro→peptoid residue substitution on cell selectivity and mechanism of antibacterial action of tritrpticin-amide antimicrobial peptide. Biochemistry 45:13007–13017

    Article  CAS  PubMed  Google Scholar 

  34. Zhu WL, Hahm KS, Shin SY (2007) Cathelicidin-derived Trp/Pro-rich antimicrobial peptides with lysine peptoid residue (Nlys): therapeutic index and plausible mode of action. J Pept Sci 13:529–535

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Consejo Nacional de Ciencia y Tecnologia, Mexico and Universidad de Guanajuato.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva E. Avila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Infante, V.V., Miranda-Olvera, A.D., De Leon-Rodriguez, L.M. et al. Effect of the Antimicrobial Peptide Tritrpticin on the In Vitro Viability and Growth of Trichomonas vaginalis . Curr Microbiol 62, 301–306 (2011). https://doi.org/10.1007/s00284-010-9709-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9709-z

Keywords

Navigation