Skip to main content
Log in

Integration of a Recombinant Chitinase into Bacillus thuringiensis Parasporal Insecticidal Crystal

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Chitinases have been successfully used in combination with Bacillus thuringiensis delta-endotoxins forming crystals in order to enhance their insecticidal activities. In this context, we opted for promoting the chitinase integration into these crystals. Thus, we engineered, for the first time, a fusion protein (CDF) consisting of the chitinase Chi255 and the carboxy-terminal half of Cry1Ac, both from B. thuringiensis subsp. kurstaki. The constructed transcriptional fusion (chi255ΔspCTcry1Ac) was cloned into a shuttle vector (Escherichia coli/B. thuringiensis) downstream the sporulation-dependent promoters BtI–BtII and upstream the cry1Ac transcription terminator. The resulting plasmid, named pF, was transferred by electroporation to crystalliferous B. thuringiensis strain BNS3 and acrystalliferous strain BNS3Cry−. The functionality of the chimerical chitinase was demonstrated by an improvement of the relative chitinolytic activity of the recombinant strain BNS3/pF by 2.5 folds. Western blot analyses showed that, despite of the instability of CDF when expressed in the acrystalliferous strain, the C-terminal half of Cry1Ac succeeded to allow the integration of the chimerical chitinase into the crystal of BNS3. The recombinant strain BNS3/pF (LC50 = 144.06 μg g−1) was 1.5 times more active against Ephestia kuehniella larvae than the wild strain (LC50 = 212.10 μg g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baum JA, Malvar T (1995) Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol Microbiol 18:1–12

    Article  CAS  PubMed  Google Scholar 

  2. Casique-Arroyo G, Bideshi D, Salcedo-Hernandez R, Barboza-Corona JE (2007) Development of a recombinant strain of Bacillus thuringiensis subsp. kurstaki HD-73 that produces the endochitinase ChiA74. Antonie Van Leeuwenhoek 92:1–9

    Article  CAS  PubMed  Google Scholar 

  3. Dammak M, Tounsi S, Abdelkafi L et al (2009) Restoration of the crystallisation of altered delta-endotoxins Cry1Ac, by the promotion of their in vivo integration into the Bacillus thuringiensis native crystal. FEMS Microbiol Lett 292:268–273

    Article  CAS  PubMed  Google Scholar 

  4. Ding X, Luo Z, Xia L et al (2008) Improving the insecticidal activity by expression of a recombinant cry1Ac gene with chitinase-encoding gene in acrystalliferous Bacillus thuringiensis. Curr Microbiol 56:442–446

    Article  CAS  PubMed  Google Scholar 

  5. Driss F, Baanannou A, Rouis S et al (2007) Effect of the chitin binding domain deletion from Bacillus thuringiensis subsp. kurstaki chitinase Chi255 on its stability in Escherichia coli. Mol Biotechnol 36:232–237

    Article  CAS  PubMed  Google Scholar 

  6. Driss F, Kallassy-Awad M, Zouari N, Jaoua S (2005) Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. kurstaki. J Appl Microbiol 99:945–953

    Article  CAS  PubMed  Google Scholar 

  7. Du C, Martin PAW, Nickerson KW (1994) Comparison of disulfide contents and solubility at alkaline pH of insecticidal and noninsecticidal Bacillus thuringiensis protein crystals. Appl Environ Microbiol 60:3847–3853

    CAS  PubMed  Google Scholar 

  8. Federici BA, Park HW, Sakano Y (2006) Insecticidal protein crystals of Bacillus thuringiensis. In: Shively JM (ed) Inclusions in prokaryotes, microbiol monogr (1). Springer-Verlag, Berlin Heidelberg, pp 196–236

    Google Scholar 

  9. Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    PubMed  Google Scholar 

  10. Honee G, Visser B (1993) The mode of action of Bacillus thuringiensis crystal proteins. Entomol Exp Appl 69:145–155

    Article  CAS  Google Scholar 

  11. Hu SB, Liu P, Ding XZ et al (2009) Efficient constitutive expression of chitinase in the mother cell of Bacillus thuringiensis and its potential to enhance the toxicity of Cry1Ac protoxin. Appl Microbiol Biotechnol 82:1157–1167

    Article  CAS  PubMed  Google Scholar 

  12. Jaoua S, Zouari N, Tounsi S, Ellouz R (1996) Study of the deltaendotoxins produced by three recently isolated strains of Bacillus thuringiensis. FEMS Microbiol Lett 145:349–354

    CAS  Google Scholar 

  13. Lertcanawanichakul M, Wiwat C, Bhumiratana A, Dean DH (2004) Expression of chitinase-encoding genes in Bacillus thuringiensis and toxicity of engineered B. thuringiensis subsp. aizawai toward Lymantria dispar larvae. Curr Microbiol 48:175–181

    Article  CAS  PubMed  Google Scholar 

  14. Liu M, Cai QX, Liu HZ et al (2002) Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity. J Appl Microbiol 93:374–379

    Article  CAS  PubMed  Google Scholar 

  15. Miranda R, Zamudio FZ, Bravo A (2001) Processing of Cry1Ab δ-endotoxin from Bacillus thuringiensis by Manduca sexta and Spodoptera frugiperda midgut proteases: role in protoxin activation and toxin inactivation. Insect Biochem Mol Biol 31:1155–1163

    Article  CAS  PubMed  Google Scholar 

  16. Naimov S, Martens-Uzunova E, Weemen-Hendriks M et al (2006) Carboxy-terminal extension effects on crystal formation and insecticidal properties of Colorado potato beetle-active Bacillus thuringiensis δ-endotoxins. Mol Biotechnol 32:185–196

    Article  CAS  PubMed  Google Scholar 

  17. Park HW, Federici BA (2000) Domain I plays an important role in the crystallization of Cry3A in Bacillus thuringiensis. Mol Biotechnol 16:97–107

    Article  CAS  PubMed  Google Scholar 

  18. Park HWA, Bideshi DK, Federici BA (2000) Molecular genetic manipulation of truncated Cry1C protein synthesis in Bacillus thuringiensis to improve stability and yield. Appl Environ Microbiol 66:4449–4455

    Article  CAS  PubMed  Google Scholar 

  19. Regev A, Keller M, Strizhov N et al (1996) Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl Environ Microbiol 62:3581–3586

    CAS  PubMed  Google Scholar 

  20. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  21. Sirichotpakorn N, Rongnoparut P, Choosang K, Panbangred W (2001) Coexpression of chitinase and the cry11Aa1 toxin genes in Bacillus thuringiensis serovar israelensis. J Invertebr Pathol 78:160–169

    Article  CAS  PubMed  Google Scholar 

  22. Song R, Peng D, Yu Z, Sun M (2008) Carboxy-terminal half of Cry1C can help vegetative insecticidal protein to form inclusion bodies in the mother cell of Bacillus thuringiensis. Appl Microbiol Biotechnol 80:647–654

    Article  CAS  PubMed  Google Scholar 

  23. Tantimavanich S, Pantowatana S, Bhumiratana A, Panbangred W (1997) Cloning of a chitinase gene into Bacillus thuringiensis subsp. aizawai for enhanced insecticidal activity. J Gen Appl Microbiol 43:31–37

    Article  Google Scholar 

  24. Terra WR (1990) Evolution of digestive systems of insects. Annu Rev Entomol 35:181–200

    Article  Google Scholar 

  25. Thamthiankul S, Moar WJ, Miller ME, Panbangred W (2004) Improving the insecticidal activity of Bacillus thuringiensis subsp. aizawai against Spodoptera exigua by chromosomal expression of a chitinase gene. Appl Microbiol Biotechnol 65:183–192

    Article  CAS  PubMed  Google Scholar 

  26. Tounsi S, Dammak M, Rebai A, Jaoua S (2005) Response of larval Ephestia kuehniella (Lepidoptera: Pyralidae) to individual Bacillus thuringiensis kurstaki toxins and toxin mixtures. Biol Control 35:27–31

    Article  CAS  Google Scholar 

  27. Tounsi S, J’Mal A, Zouari N, Jaoua S (1999) Cloning and nucleotide sequence of a novel cry1Aa-type gene from Bacillus thuringiensis subsp. kurstaki. Biotechnol Lett 21:771–775

    Article  CAS  Google Scholar 

  28. Tounsi S, Jaoua S (2003) Characterization of a novel cry2Aa-type gene from Bacillus thuringiensis subsp. kurstaki. Biotechnol Lett 25:1219–1223

    Article  CAS  PubMed  Google Scholar 

  29. Tounsi S, Zouari N, Jaoua S (2003) Cloning and study of the expression of a novel cry1Ia-type gene from Bacillus thuringiensis subsp. kurstaki. J Appl Microbiol 95:23–28

    Article  CAS  PubMed  Google Scholar 

  30. Travers RS, Martin PAW, Reichelderfer CF (1987) Selective process for efficient isolation of soil Bacillus spp. Appl Environ Microbiol 53:263–1266

    Google Scholar 

  31. Whalon ME, Wingerd BA (2003) Bt: mode of action and use. Arch Insect Biochem Physiol 54:200–211

    Article  CAS  PubMed  Google Scholar 

  32. Wiwat C, Thaithanun S, Pantuwatana S, Bhumiratana A (2000) Toxicity of chitinase-producing Bacillus thuringiensis sp. kurstaki HD-1 toward Plutella xylostella. J Invertebr Pathol 79:270–277

    Article  Google Scholar 

  33. Zouari N, Jaoua S (1997) Purification and immunological characterization of particular delta-endotoxins from three strains of Bacillus thuringiensis. Biotechnol Lett 19:825–829

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the Tunisian «Ministère de l’Enseignement Supérieur et de la Recherche Scientifique (MESRS)».

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Jaoua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Driss, F., Rouis, S., Azzouz, H. et al. Integration of a Recombinant Chitinase into Bacillus thuringiensis Parasporal Insecticidal Crystal. Curr Microbiol 62, 281–288 (2011). https://doi.org/10.1007/s00284-010-9704-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9704-4

Keywords

Navigation