Current Microbiology

, Volume 62, Issue 1, pp 126–132 | Cite as

Characterization of the Antiviral Activity for Influenza Viruses M1 Zinc Finger Peptides

  • Yongjin Wang
  • Huihui Xiao
  • Nannan Wu
  • Huiling Shi
  • Hongwei Xu
  • Lichen Zhou
  • Xu-Guang Xi
  • Tianhou Wang
  • Xiaoming WangEmail author


We sought to investigate the cellular uptake and antiviral activity for the M1 zinc finger peptides derived from influenza A and influenza B viruses in vitro. No cellular uptake was detected by fluorescent microscopy for the synthetic zinc finger peptides. When flanked to a cell permeable peptide Tp10, the zinc finger recombinant proteins were efficiently internalized by MDCK cells. However, no antiviral activity was detected against homologous or heterologous virus infections for the synthetic peptides or the Tp10-flanked recombinant proteins, regardless treated with or without Zn2+. Nevertheless, MDCK cell constitutively expressing the M1 zinc finger peptides in cell nuclei potently inhibited replication of homologous, but not heterologous influenza viruses. Adenoviral vector delivered M1 zinc finger peptides also exhibited potent antiviral activity against homologous viruses challenge. Transduction at 100 PFU dose of recombinant adenovirus efficiently protected 99% of the cells from 100 TCID50 of different virus infections for both peptides. These results brought new insight to the antiviral researches against influenza virus infections.


Influenza Antiviral Activity Synthetic Peptide MDCK Cell Adenoviral Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by grants from Shanghai Municipal Science and Technology Commission (No. 07DZ22940) and Shanghai Municipal Wildlife Administration (No. SBHZ2006_01).


  1. 1.
    Carroll AR, Wagner RR (1979) Role of the membrane (M) protein in endogenous inhibition of in vitro transcription by vesicular stomatitis virus. J Virol 29:134–142PubMedGoogle Scholar
  2. 2.
    Elster C, Fourest E, Baudin F, Larsen K, Cusak S, Ruigrok WH (1994) A small percentage of influenza virus M1 protein contains zinc but does not influence in vitro M1-RNA interaction. J Gen Virol 75:37–42CrossRefPubMedGoogle Scholar
  3. 3.
    Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. J Biol Chem 276:5836–5840CrossRefPubMedGoogle Scholar
  4. 4.
    Gozdek A, Zhukov I, Polkowska A, Poznanski J, Stankiewicz-Drogon A, Pawlowicz JM, Zagorski-Ostoja W, Borowski P, Boguszewska-Chachulska AM (2008) NS3 Peptide, a novel potent hepatitis C virus NS3 helicase inhibitor: its mechanism of action and antiviral activity in the replicon system. Antimicrob Agents Ch 52:393–401CrossRefGoogle Scholar
  5. 5.
    Green LM, Berg JM (1989) A retroviral Cys-Xaa2-Cys-Xaa4-His-Xaa4-Cys peptide binds metal ions: spectroscopic studies and a proposed three-dimensional structure. Proc Natl Acad Sci USA 86:4047–4051CrossRefPubMedGoogle Scholar
  6. 6.
    Hankins WR, Nagata K, Bucher DJ, Popple S, Ishihama A (1989) Monoclonal antibody analysis of influenza virus matrix protein epitopes involved in transcription inhibition. Virus Genes 3:111–126CrossRefPubMedGoogle Scholar
  7. 7.
    Hui EK, Ralston K, Judd AK, Nayak DP (2003) Conserved cysteine and histidine residues in the putative zinc finger motif of the influenza A virus M1 protein are not critical for influenza virus replication. J Gen Virol 84:3105–3113CrossRefPubMedGoogle Scholar
  8. 8.
    Judd AK, Sanchez A, Bucher DJ, Huffman JH, Bailey K, Robert W, Sidwell RW (1997) In vivo anti-influenza virus activity of a zinc finger peptide. Antimicrob Agents Ch 41:687–692Google Scholar
  9. 9.
    Lamb RA, Choppin PW (1983) The structure and replication of influenza virus. Annu Rev Biochem 52:467–506CrossRefPubMedGoogle Scholar
  10. 10.
    Mino T, Mori T, Aoyama Y, Sera T (2008) Cell-permeable artificial zinc-finger proteins as potent antiviral drugs for human papillomaviruses. Arch Virol 153:1291–1298CrossRefPubMedGoogle Scholar
  11. 11.
    Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109:259–302CrossRefPubMedGoogle Scholar
  12. 12.
    Nasser EH, Judd AK, Sanchez A, Anastasiou D, Bucher DJ (1996) Antiviral activity of influenza virus M1 zinc finger peptides. J Virol 70:8639–8644PubMedGoogle Scholar
  13. 13.
    Nayak DP, Hui EK, Barman S (2004) Assembly and budding of influenza virus. Virus Res 106:147–165CrossRefPubMedGoogle Scholar
  14. 14.
    Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P, Hughes M, Perez DR, Donis R, Hoffmann E, Hobom G, Kawaoka Y (1999) Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci USA 96:9345–9350CrossRefPubMedGoogle Scholar
  15. 15.
    Twu K, Noah D, Rao P, Kuo R, Krug R (2006) The CPSF30 Binding site on the NS1A protein of influenza A virus is a potential antiviral target. J Virol 80:3957–3965CrossRefPubMedGoogle Scholar
  16. 16.
    Wakefield L, Brownlee GG (1988) RNA-binding activity of the influenza virus matrix protein. Virus Res 2(Suppl):35CrossRefGoogle Scholar
  17. 17.
    Wakefield L, Brownlee GG (1989) RNA-binding properties of influenza A virus matrix protein M1. Nucl Acids Res 17:8569–8580CrossRefPubMedGoogle Scholar
  18. 18.
    Wang Y, Zhou L, Shi H, Xu H, Yao H, Xi XG, Toyoda T, Wang X, Wang T (2009) Monoclonal antibody recognizing SLLTEVET epitope of M2 protein potently inhibited the replication of influenza A viruses in MDCK cells. Biochem Biophys Res Commun 385:118–122CrossRefPubMedGoogle Scholar
  19. 19.
    Yandek LE, Pokorny A, Floren A, Knoelke K, Langel U, Almeida PFF (2007) Mechanism of the cell-penetrating peptide transportan 10 permeation of lipid bilayers. Biophys J 92:2434–2444CrossRefPubMedGoogle Scholar
  20. 20.
    Ye Z, Wagner RR (1992) Down regulation of vesicular stomatitis virus transcription by the matrix protein of influenza virus. J Gen Virol 73:743–748CrossRefPubMedGoogle Scholar
  21. 21.
    Ye Z, Pal R, Fox JW, Wagner RR (1987) Functional and antigenic domains of the matrix (M1) protein of the influenza virus. J Virol 61:239–246PubMedGoogle Scholar
  22. 22.
    Ye Z, Baylor W, Wagner RR (1989) Transcription inhibition and RNA binding domains of influenza A virus matrix protein mapped with anti-idiotypic antibodies and synthetic peptides. J Virol 63:3586–3594PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yongjin Wang
    • 1
  • Huihui Xiao
    • 1
  • Nannan Wu
    • 1
  • Huiling Shi
    • 1
  • Hongwei Xu
    • 1
  • Lichen Zhou
    • 1
  • Xu-Guang Xi
    • 2
  • Tianhou Wang
    • 1
  • Xiaoming Wang
    • 1
    Email author
  1. 1.Laboratory of Wildlife Epidemic DiseasesEast China Normal UniversityShanghaiChina
  2. 2.CNRS, UMR 2027, Institut Curie-Section de RechercheCentre UniversitaireOrsayFrance

Personalised recommendations