Current Microbiology

, Volume 62, Issue 1, pp 101–110 | Cite as

LasR Receptor for Detection of Long-Chain Quorum-Sensing Signals: Identification of N-Acyl-homoserine Lactones Encoded by the avsI Locus of Agrobacterium vitis

  • Michael A. SavkaEmail author
  • Phuong T. Le
  • Thomas J. Burr


Bacterial biosensor strains have greatly facilitated the rapid discovery, isolation, and study of quorum-sensing systems. In this study, we determined the relative sensitivity of a LasR-based E. coli bacterial bioluminescence biosensor JM109 (pSB1075) for 13 diverse long-chain N-acyl-homoserine lactones (AHLs) including oxygen-substituted and -unsubstituted AHLs containing 14, 16, and 18 carbons and with and without double bonds. Furthermore, we show by bioassay, HPLC, and GC/MS that four long-chain AHLs of the C16-HSL family are encoded by the avsI gene of Agrobacterium vitis strain F2/5, a non-tumorigenic strain that inhibits pathogenic strains of A. vitis from causing crown gall on grape. The four C16-HSLs include: C16-HSL, N-hexadecanoyl homoserine lactone; 3-oxo-C16-HSL, N-(3-oxohexadecanoyl)homoserine lactone; C16:1-HSL, N-(cis-9-octadecenoyl)homoserine lactone; and 3-oxo-C16:1-HSL, N-(3-oxo-cis-11-hexadecenoyl)homoserine lactone. Thus, the LasR-based bioluminescent biosensor tested in this study should serve as a useful tool for the detection of various long-chain AHLs with and without double bonds as well as those oxylated at the third carbon from uninvestigated species.


High Pressure Liquid Chromatography Quorum Sense Homoserine Homoserine Lactone Acyl Side Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



M. A. Savka thanks Rochester Institute of Technology (RIT) for a sabbatical leave of absence. This study was supported by the NRI Competitive Grants Program/USDA award numbers 2002-35319-12577 to M. A. Savka and 2006-35319-16558 to T. J .Burr.

Supplementary material

284_2010_9679_MOESM1_ESM.pdf (40 kb)
Supplementary material 1 (PDF 40 kb)


  1. 1.
    Bottomley MJ, Muraglia E, Bazzo R, Carfi A (2007) Molecular insight into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bond to its autoinducer. J Biol Chem 282:13592–13600CrossRefPubMedGoogle Scholar
  2. 2.
    Burr TJ, Otten L (1999) Crown gall of grape: biology and disease management. Annu Rev Phytopathol 37:58–80CrossRefGoogle Scholar
  3. 3.
    Cataldi RI, Gianco G, Palazzo L, Quaranta V (2007) Occurrence of N-acyl-L-homoserine lactones in extracts of some Gram-negative bacteria evaluated by gas chromatograph-mass spectrometry. Anal Biochem 361:226–235CrossRefPubMedGoogle Scholar
  4. 4.
    Eberhard A, Schineller JB (2000) Chemical synthesis of bacterial autoinducers and analogs. In: Ziegler MM, Baldwin TO (eds) Methods in enzymology, vol 305. Academic Press, New York, pp 301–315Google Scholar
  5. 5.
    Farrand SK, Qin Y, Oger P (2002) Quorum-sensing system of Agrobacterium plasmids: analysis and utility. Methods Enzymol 358:452–484CrossRefPubMedGoogle Scholar
  6. 6.
    Fuqua C, Winans S (1999) Signal generation in autoinduction systems: synthesis of acylated homoserine lactones by LuxI-type proteins. In: Dunny GM, Winans SC (eds) Cell-cell signaling in bacteria. ASM Press, Washington, DC, pp 211–230Google Scholar
  7. 7.
    Gan HM, Buckley L, Szegedi E, Hudson AO, Savka MA (2009) Identification of an rsh gene from a Novosphingobium sp. necessary for quorum-sensing signal accumulation. J Bacteriol 191:2551–2560CrossRefPubMedGoogle Scholar
  8. 8.
    Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing Rhizobia. Microbiol Mol Biol Rev 67:574–592CrossRefPubMedGoogle Scholar
  9. 9.
    Gould TA, Schweizer HP, Churchill MEA (2004) Structure of the Pseudomonas aeruginosa acyl-homoserine lactone synthase LasI. Mol Microbiol 53:1135–1146CrossRefPubMedGoogle Scholar
  10. 10.
    Gould TA, Herman J, Krank J, Murphy RC, Cook DM, Churchill MEA (2006) Specificity of acyl-homoserine lactone synthases examined by mass spectrometry. J Bacteriol 188:773–783CrossRefPubMedGoogle Scholar
  11. 11.
    Hao G, Burr TJ (2006) Regulation of long-chain N-acyl-homoserine lactones in Agrobacterium vitis. J Bacteriol 188:2173–2183CrossRefPubMedGoogle Scholar
  12. 12.
    Hao G, Zhang H, Zheng D, Burr TJ (2005) luxR homology avhR in Agrobacterium vitis affects the development of a grape-specific necrosis and a tobacco hypersensitive response. J Bacteriol 187:185–192CrossRefPubMedGoogle Scholar
  13. 13.
    Herlache TC, Zhang HS, Reid CL, Carle S, Zheng D, Basaran P, Thanker M, Burr AT, Burr TJ (2001) Mutations that affect Agrobacterium vitis-induced grape necrosis also alter its ability to cause a hypersensitive response on tobacco. Phytopathology 91:966–972CrossRefPubMedGoogle Scholar
  14. 14.
    Kirwan JP, Gould TA, Schweizer HP, Bearden SW, Murphy RC, Churchill MEA (2006) Quorum-sensing signal synthesis by the Yersinia pestis acyl-homoserine lactone synthase YspI. J Bacteriol 188:784–788CrossRefPubMedGoogle Scholar
  15. 15.
    Krick A, Kehraus S, Eberl L, Riedel K, Anke H, Kaesler I, Graeber L, Szewzyk U, Konig GM (2007) A marine mesorhizobium sp. produces structurally novel long-chain N-acyl-L-homoserine lactones. Appl Environ Microbiol 73:3587–3594CrossRefPubMedGoogle Scholar
  16. 16.
    Li Y, Gronquist MR, Hao G, Holden MR, Eberhard A, Scott RA, Savka MA, Szegedi E, Sule S et al (2006) Chromosome and plasmid-encoded N-acyl-homoserine lactones produced by Agrobacterium vitis wild type and mutants that differ in their interactions with grape and tobacco. Physiol Mol Plant Pathol 67:284–290CrossRefGoogle Scholar
  17. 17.
    Llamas I, Keshavan N, Gonzalez JE (2004) Use of Sinorhizobium meliloti as an indicator for specific detection of long-chain N-acyl-homoserine lactones. Appl Environ Microbiol 70:3715–3723CrossRefPubMedGoogle Scholar
  18. 18.
    Llamas I, Quesada E, Marinez-Canovas MJ, Gronquist M, Eberhard A, Gonzalez JE (2005) Quorum sensing in halophilic bacteria: detection of N-acyl-homoserine lactones in the expolysaccharide-producing species of Halomonas. Extremophiles 9:333–341CrossRefPubMedGoogle Scholar
  19. 19.
    Loh J, Pierson EA, Pierson LS, Stacy S, Chatterjee A (2002) Quorum sensing in plant-associated bacteria. Curr Opin Plant Biol 5:285–290CrossRefPubMedGoogle Scholar
  20. 20.
    Lowe N, Gan HM, Chakravartty V, Scott R, Szegedi E, Burr TJ, Savka MA (2009) Quorum-sensing signal production by Agrobacterium vitis strains and their tumor-inducing and tartrate-catabolic plasmids. FEMS Microbiol Lett 296:102–109CrossRefPubMedGoogle Scholar
  21. 21.
    Marketon MM, Gronquist MR, Eberhard A, Gonzalez JE (2002) Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl-homoserine lactones. J Bacteriol 184:5686–5695CrossRefPubMedGoogle Scholar
  22. 22.
    McLafferty FW (1966) Interpretation of mass spectra an introduction. W. A. Benjamin, ReadingGoogle Scholar
  23. 23.
    Minogue TD, Wehland-von Trebra M, Bernhard F, von Bodman SB (2002) The autoregulation role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Mol Microbiol 44:1625–1635CrossRefPubMedGoogle Scholar
  24. 24.
    Ortori CA, Atkinson S, Chhabra SR, Camara M, Williams P, Barrett DA (2006) Comprehensive profiling of N-acylhomoserine lactones produced by Yersinia pseudotuberculosis using liquid chromatography coupled to hybrid quadrupole-linear ion trap mass spectrometry. Anal Bioanal Chem 387:497–511CrossRefPubMedGoogle Scholar
  25. 25.
    Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP (1994) Structure of the autoinducer required for expression of Psuedomonas aeruginosa virulence genes. Proc Natl Acad Sci USA 91:197–201CrossRefPubMedGoogle Scholar
  26. 26.
    Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C (2004) Biofilm formation in plant-microbe associations. Curr Opin Microbiol 6:602–609CrossRefGoogle Scholar
  27. 27.
    Schaefer AL, Taylor TA, Beatty JT, Greenberg EP (2002) Long-chain acyl-homoserine lactone quorum-sensing regulation of Rhodobacter capsulatus gene transfer agent production. J Bacteriol 184:6515–6521CrossRefPubMedGoogle Scholar
  28. 28.
    Scott RA, Weil J, Le PT, Williams P, Fray RG, von Bodman SB, Savka MA (2006) Long- and short-chain plant-produced bacterial N-acyl-homoserine lactones become components of phyllsphere, rhizosphere and soil. Mol Plant-Microbe Interact 19:227–239CrossRefPubMedGoogle Scholar
  29. 29.
    Shaphorst JL, van Syl FGH, Strijdom BW, Groenwold ZE (1985) Agrocin-producing pathogenic and nonpathogenic biotype-3 strains of Agrobacterium tumefaciens active against biotype-3 pathogens. Curr Microbiol 12:45–52CrossRefGoogle Scholar
  30. 30.
    Shaw PD, Ping G, Daly SL, Cha C, Cronan JE, Rinehart KL, Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci USA 94:6036–6041CrossRefPubMedGoogle Scholar
  31. 31.
    Smith S, Wang J-H, Swatton JE, Davenport P, Price B, Mikkelsen H, Stickland H, Nishikawa K, Gardiol N et al (2006) Variations of a theme: diverse N-acyl-homoserine lactone-mediated quorum sensing mechanisms in Gram-negative bacteria. Sci Prog 89:167–211CrossRefPubMedGoogle Scholar
  32. 32.
    Steidle A, Sigl K, Schuhegger R, Ihring A, Schmid M, Gantner S, Stoffels M, Riedel K, Givskov M et al (2001) Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 67:5761–5770CrossRefPubMedGoogle Scholar
  33. 33.
    Steindler L, Venturi V (2007) Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol Lett 266:1–9CrossRefPubMedGoogle Scholar
  34. 34.
    Stevens AM, Greenberg EP (1997) Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes. J Bacteriol 179:557–562PubMedGoogle Scholar
  35. 35.
    Szegedi E, Czakó M, Otten L, Koncz CS (1988) Opines in crown gall tumors induced by biotype 3 isolates of Agrobacterium tumefaciens. Physiol Mol Plant Pathol 32:237–247CrossRefGoogle Scholar
  36. 36.
    Szegedi E, Sule S, Burr TJ (1999) Agrobacterium vitis strain F2/5 contains tartrate and octopine utilization plasmids which do not encode functions for tumor inhibition on grapevine. J Phytopathol 147:665–669CrossRefGoogle Scholar
  37. 37.
    Taga ME, Bassler BL (2003) Chemical communication among bacteria. Proc Natl Acad Sci USA 100:14549–14554CrossRefPubMedGoogle Scholar
  38. 38.
    Vannini A, Volpari C, Gargioli C, Murageli E, Cortese R, De Francesco R, Neddermann P, Marco SD (2002) The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J 21:4393–4401CrossRefPubMedGoogle Scholar
  39. 39.
    Watson B, Currier TC, Gordon MP, Chilton M-D, Nester EW (1975) Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol 123:255–264PubMedGoogle Scholar
  40. 40.
    Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938CrossRefPubMedGoogle Scholar
  41. 41.
    Winson MK, Swift S, Fish L, Throup JP, Jorgensen F, Chhabra SR, Bycroft BW, Williams P, Stewart GS (1998) Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl-homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185–192CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang R, Pappas T, Brace JL, Miller PC, Qulmassov T, Molyneaus JM, Anderson JC, Bashkin JK, Winans SC et al (2002) Structure of bacterial quorum-sensing transcriptional factor complexed with pheromone and DNA. Nature 417:971–974CrossRefPubMedGoogle Scholar
  43. 43.
    Zheng D, Zhang HS, Carle S, Hao GX, Holden MR, Burr TJ (2003) A luxR homolog, aviR, in Agrobacterium vitis is associated with induction of necrosis on grape and a hypersensitive response on tobacco. Mol Plant-Microbe Interact 16:650–658CrossRefPubMedGoogle Scholar
  44. 44.
    Zhu J, Chai Z, Zhong Z, Li S, Winans SC (2003) Agrobacterium bioassay strain for ultrasensitive detection of N-acyl-homoserine lactone-type quorum-sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol 69:6949–6953CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Michael A. Savka
    • 1
    Email author
  • Phuong T. Le
    • 1
  • Thomas J. Burr
    • 2
  1. 1.School of Biological and Medical SciencesRochester Institute of TechnologyRochesterUSA
  2. 2.Department of Microbial Biology and Plant PathologyCornell UniversityGenevaUSA

Personalised recommendations