Advertisement

Current Microbiology

, Volume 62, Issue 1, pp 16–20 | Cite as

Construction of 4″-Isovalerylspiramycin-I-Producing Strain by In-Frame Partial Deletion of 3-O-Acyltransferase Gene in Streptomyces spiramyceticus WSJ-1, the Bitespiramycin Producer

  • Chunyan Ma
  • Hongxia Zhou
  • Jingyan Li
  • Jianlu Dai
  • Weiqing He
  • Hongyuan Wang
  • Linzhuan WuEmail author
  • Yiguang WangEmail author
Article

Abstract

Bitespiramycin (BT), a multi-component antibiotic consisted mainly of 4″-isovalerylspiramycin I, II and III, is produced by Streptomyces spiramyceticus WSJ-1, a recombinant spiramycin-production strain that harbored the 4″-O-acyltransferase gene (ist) from Streptomyces mycarofaciens 1748, which could isovalerylate the 4″-OH of spiramycin. To eliminate the production of components 4″-isovalerylspiramycin II and III, therefore reducing the component complexity of BT, inactivation of the sspA gene, which encodes the 3-O-acyltransferase responsible for the acylation of spiramycin I to spiramycin II and III, was performed in Streptomyces spiramyceticus WSJ-1, by in-frame partial deletion. The resulting strain, Streptomyces spiramyceticus WSJ-2, is a 4″-isovalerylspiramycin-I-producing strain as expected.

Keywords

Streptomyces Minimal Inhibition Concentration Spiramycin Partial Deletion Apramycin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This research was supported by China National High Technology Programme (2006AA02Z230).

References

  1. 1.
    Shang GD, Dai JL, Wang Y (1999) Construction of a stable bioengineered strain of biotechmycin. Chin J Biotechnol 15(2):171–175Google Scholar
  2. 2.
    Jin W, Sun C, Jiang W et al (2002) Chemical studies of shengjimycin components. Chin J Antibiot 22(12):705–708Google Scholar
  3. 3.
    Omura S, Ikeda H, Kitao C (1979) Isolation and properties of spiramycin I 3-hydroxyl acylase from Streptomyces ambofaciens. J Biochem (Tokyo) 86(6):1753–1758Google Scholar
  4. 4.
    Wu LZ, Ma CY, Wang YG et al (2007) Deletion of spiramycin 3-O-acyltransferase gene from Streptomyces spiramyceticus F21 resulted in the production of spiramycin I as major component. Chin J Biotechnol 23(4):612–617CrossRefGoogle Scholar
  5. 5.
    Bierman M, Logan R, O’Brien K et al (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116(1):43–49CrossRefPubMedGoogle Scholar
  6. 6.
    Xu P, Li WJ, Xu LH et al (2003) A microwave-based method for genomic DNA extraction from Actinomycetes. Microbiology (China) 30(4):73–75Google Scholar
  7. 7.
    Sambrook J, Fritsch EF, Maniatis T (1999) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  8. 8.
    Tobias K, Bibb MJ, Mark JB et al (2000) Practical Streptomyces genetics. The John Innes Foundation, NorwichGoogle Scholar
  9. 9.
    Liu YF, Sun CH, Jin WZ (1997) Isolation and structural identification of shengjimycin A and B, the major components of shengjimycins. Chin J Antibiot 22(5):328–333Google Scholar
  10. 10.
    Sun CH, Jiang W, Jin WZ et al (2000) Isolation and structure determination of 4″-isovalerylspiramycin I. Chin J Antibiot 25(3):1–4Google Scholar
  11. 11.
    Shang GD, Dai JL, Wang YG (2001) Construction and physiological studies on a stable bioengineered strain of shengjimycin. J Antibiot 54(1):66–73Google Scholar
  12. 12.
    Shi XG, Zhong D-F (2003) Analysis of multicomponent in bitespiramycin by high-performance liquid chromatography-mass spectrometry. J Chin Mass Spectrom Soc 24(4):460–463Google Scholar
  13. 13.
    Liu L, Saevels J, Louis P et al (1999) Interlaboratory study comparing the microbiological potency of spiramycins I, II and III. J Pharm Biomed Anal 20(1–2):217–224CrossRefPubMedGoogle Scholar
  14. 14.
    Schauner C, Dary A, Lebrihi A, Leblond P, Decaris B, Germain P (1999) Modulation of lipid metabolism and spiramycin biosynthesis in Streptomyces ambofaciens unstable mutants. Appl Environ Microbiol 65(6):2730–2737PubMedGoogle Scholar
  15. 15.
    Leblond P, Demuyter P, Moutier L, Laakel M, Decaris B, Simonet JM (1989) Hypervariability, a new phenomenon of genetic instability, related to DNA amplification in Streptomyces ambofaciens. J Bacteriol 171(1):419–423PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Chunyan Ma
    • 1
  • Hongxia Zhou
    • 1
  • Jingyan Li
    • 1
  • Jianlu Dai
    • 1
  • Weiqing He
    • 1
  • Hongyuan Wang
    • 1
  • Linzhuan Wu
    • 1
    Email author
  • Yiguang Wang
    • 1
    Email author
  1. 1.Key Lab of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal BiotechnologyCAMS & PUMCBeijingChina

Personalised recommendations