Skip to main content
Log in

Culture-Independent Analysis of Lactic Acid Bacteria Diversity Associated with Mezcal Fermentation

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Mezcal is an alcoholic beverage obtained from the distillation of fermented juices of cooked Agave spp. plant stalks (agave must), and each region in Mexico with denomination of origin uses defined Agave species to prepare mezcal with unique organoleptic characteristics. During fermentation to produce mezcal in the state of Tamaulipas, not only alcohol-producing yeasts are involved, but also a lactic acid bacterial community that has not been characterized yet. In order to address this lack of knowledge on this traditional Mexican beverage, we performed a DGGE-16S rRNA analysis of the lactic acid bacterial diversity and metabolite accumulation during the fermentation of a typical agave must that is rustically produced in San Carlos County (Tamaulipas, Mexico). The analysis of metabolite production indicated a short but important malolactic fermentation stage not previously described for mezcal. The denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA genes showed a distinctive lactic acid bacterial community composed mainly of Pediococcus parvulus, Lactobacillus brevis, Lactobacillus composti, Lactobacillus parabuchneri, and Lactobacillus plantarum. Some atypical genera such as Weissella and Bacillus were also found in the residual must. Our results suggest that the lactic acid bacteria could strongly be implicated in the organoleptic attributes of this traditional Mexican distilled beverage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lappe-Oliveras P, Moreno-Terrazas R, Arrizón-Gaviño J, Herrera-Suarez T, García-Mendoza A, Gschaedler-Mathis A (2008) Yeast associated with the production of Mexican alcoholic nondistilled and distilled Agave beverages. FEMS Yeast Res 8:1037–1052

    Article  CAS  PubMed  Google Scholar 

  2. Martinez-Aguilar JF, Peña-Alvarez A (2009) Characterization of five typical agave plants used to produce mezcal through their simple lipid composition analysis by gas chromatography. J Agric Food Chem 57:1933–1939

    Article  CAS  PubMed  Google Scholar 

  3. Narváez-Zapata JA, Sánchez-Teyer FL (2009) Agaves as a raw material: recent technologies and applications. Recent Pat Biotechnol 3:185–191

    Article  PubMed  Google Scholar 

  4. De Leon-Rodriguez A, Gonzalez-Hernandez l, Barba de la Rosa AP, Escalante-Minakata P, López MG (2006) Characterization of volatile compounds of mezcal, an ethnic alcoholic beverage obtained from Agave salmiana. J Agric Food Chem 54:1337–1341

    Article  PubMed  Google Scholar 

  5. Lachenmeier DW, Sohnius EM, Attig R, Lopez MG (2006) Quantification of selected volatile constituents and anions in Mexican agave spirits (Tequila, Mezcal, Sotol, Bacanora). J Agric Food Chem 54:3911–3915

    Article  CAS  PubMed  Google Scholar 

  6. De León-Rodríguez A, Escalante-Minakata P, Barba de la Rosa AP, Blaschek HP (2008) Optimization of fermentation conditions for the production of the mezcal from Agave salmiana using response surface methodology. Chem Eng Process 47:76–82

    Google Scholar 

  7. Escalante-Minakata P, Blaschek HP, Barba de la Rosa AP, Santos L, De León-Rodríguez A (2008) Identification of yeast and bacteria involved in the mezcal fermentation of Agave salmiana. Lett Appl Microbiol 46:626–630

    Article  CAS  Google Scholar 

  8. Zamudio-Maya M, Narváez-Zapata JA, Rojas-Herrera R (2008) Isolation and identification of lactic acid bacteria from sediments of a coastal marsh using a differential selective medium. Lett Appl Microbiol 46:402–407

    Article  CAS  PubMed  Google Scholar 

  9. Endo A, Okada S (2005) Monitoring the lactic acid bacterial diversity during Shochu fermentation by PCR-denaturing gradient gel electrophoresis. J Biosci Bioeng 99:216–221

    Article  CAS  PubMed  Google Scholar 

  10. Randazzo C, Heilig H, Restuccia C, Giudici P, Caggia C (2005) Bacterial population in traditional sourdough evaluated by molecular methods. J App Microbiol 99:251–258

    Article  CAS  Google Scholar 

  11. Settanni L, Valmorri S, Van Sinderen D, Suzzi G, Paparella A, Corsetti A (2006) Combination of multiplex PCR and PCR-denaturing gradient gel electrophoresis for monitoring common sourdough-associated Lactobacillus species. Appl Environ Microbiol 72:3793–3796

    Article  CAS  PubMed  Google Scholar 

  12. McFeeters RF (1993) Single-injection HPLC analysis of acids, sugars, and alcohols in cucumber fermentations. J Agric Food Chem 41:1439–1443

    Article  CAS  Google Scholar 

  13. Rojas-Herrera R, Narváez-Zapata JA, Zamudio-Maya M, Mena-Martínez ME (2008) A simple silica-based method for metagenomic DNA extraction from soil and sediments. Mol Biotechnol 40:13–17

    Article  CAS  PubMed  Google Scholar 

  14. Cole J, Chai B, Farris R, Wang Q, Kulam S, McGarrell D, Garrity G, Tiedje J (2005) The ribosomal database project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucl Acids Res 33:294–296

    Article  Google Scholar 

  15. Maidak B, Olsen G, Larsen N, Overbeek R, McCaughey M, Woese C (1997) The RDP (ribosomal database project). Nucl Acids Res 25:109–111

    Article  CAS  PubMed  Google Scholar 

  16. Wang Q, Garrity G, Tiedje J, Cole J (2007) Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  Google Scholar 

  17. Nixon KC (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414

    Article  Google Scholar 

  18. Back W (1994) Farbatlas und handbuch der getränkebiologie. Verlag Hans Carl, Nürnberg, Germany

    Google Scholar 

  19. Endo A, Okada S (2007) Lactobacillus composti sp. nov., a lactic acid bacterium isolated from a compost of distilled shochu residue. Int J Syst Evol Microbiol 57:870–872

    Article  CAS  PubMed  Google Scholar 

  20. Van Beek S, Priest FG (2002) Evolution of the lactic acid bacterial community during malt whisky fermentation: a polyphasic study. Appl Environ Microbiol 68:297–305

    Article  PubMed  Google Scholar 

  21. Ribéreau-Gayon P (2000) Handbook of enology. Wiley, Chichester, UK

    Google Scholar 

  22. López I, Ruiz-Larrea F, Cocolin L, Orr E, Phister T, Marshall M, Vander Gheynst J, Mills DA (2003) Design and evaluation of PCR primers for analysis of bacterial populations in wine by denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:6801–6807

    Article  PubMed  Google Scholar 

  23. Simpson KL, Pettersson B, Priest FG (2001) Characterization of lactobacilli from Scotch malt whisky distilleries and description of Lactobacillus ferintoshensis sp. nov., a new species isolated from malt whisky fermentations. Microbiology 147:1007–1016

    CAS  PubMed  Google Scholar 

  24. Tanasupawat S, Pakdeeto A, Thawai C, Yukphan P, Okada S (2007) Identification of lactic acid bacteria from fermented tea leaves (miang) in Thailand and proposals of Lactobacillus thailandensis sp. nov., Lactobacillus camelliae sp. nov., and Pediococcus siamensis sp. nov. J Gen Appl Microbiol 53:7–15

    Article  CAS  PubMed  Google Scholar 

  25. Scheirlinck I, Van der Meulen R, Van Schoor A, Vancanneyt M, De Vuyst L, Vandamme P, Huys G (2007) Influence of geographical origin and flour type on diversity of lactic acid bacteria in traditional Belgian sourdoughs. Appl Environ Microbiol 73:6262–6269

    Article  CAS  PubMed  Google Scholar 

  26. Fleet GH, Lafon-Lafourcade S, Ribéreau-Gayon P (1984) Evolution of yeasts and lactic acid bacteria during fermentation and storage of Bordeaux wines. Appl Environ Microbiol 48:1034–1038

    CAS  PubMed  Google Scholar 

  27. Matthews A, Grimaldi A, Walker M, Bartowsky E, Grbin P, Jiranek V (2004) Lactic acid bacteria as a potential source of enzymes for use in vinification. Appl Environ Microbiol 70:5715–5731

    Article  CAS  PubMed  Google Scholar 

  28. Díaz-Ruiz G, Guyot JP, Ruiz-Teran F, Morlon-Guyot J, Wacher C (2003) Microbial and physiological characterization of weakly amylolytic but fast-growing lactic acid bacteria: a functional role in supporting microbial diversity in pozol, a Mexican fermented maize beverage. Appl Environ Microbiol 69:4367–4374

    Article  PubMed  Google Scholar 

  29. Lonvaud-Funel A, Strasser de Saad AM (1982) Purification and properties of a malolactic enzyme from a strain of Leuconostoc mesenteroides isolated from grapes. Appl Environ Microbiol 43:357–361

    CAS  PubMed  Google Scholar 

  30. Liu SQ, Pilone GJ (1998) A review: arginine metabolism in wine lactic acid bacteria and its practical significance. J Appl Microbiol 84:315–327

    Article  CAS  Google Scholar 

  31. Hugenholtz J (1993) Citrate metabolism in lactic acid bacteria. FEMS Microbiol Rev 12:165–178

    Article  CAS  Google Scholar 

  32. Palles T, Beresford T, Condon S, Cogan TM (1998) Citrate metabolism in Lactobacillus casei and Lactobacillus plantarum. J Appl Microbiol 85:147–154

    Article  CAS  Google Scholar 

  33. Kaneuchi C, Seki M, Komagata E (1988) Production of succinic acid from citric acid and related acids by Lactobacillus strains. Appl Environ Microbiol 54:3053–3056

    CAS  PubMed  Google Scholar 

  34. Liu SQ (2003) Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. Int J Food Microbiol 83:115–131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support granted by the Instituto Politécnico Nacional (SIP-IPN, México) Project funds SIP2008-0081, SIP2008-0597, and SIP2009-0613 and to Project CONACyT-Básica2006-57576 granted by the Consejo Nacional de Ciencia y Tecnología (México).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Narváez-Zapata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narváez-Zapata, J.A., Rojas-Herrera, R.A., Rodríguez-Luna, I.C. et al. Culture-Independent Analysis of Lactic Acid Bacteria Diversity Associated with Mezcal Fermentation. Curr Microbiol 61, 444–450 (2010). https://doi.org/10.1007/s00284-010-9636-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9636-z

Keywords

Navigation