Skip to main content
Log in

Bacteriophytochrome-Dependent Regulation of Light-Harvesting Complexes in Rhodopseudomonas palustris Anaerobic Cultures

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bacteriophytochromes (Bphs) are photoreceptors that help bacteria sense changes in light wavelength and intensity. Bphs contain a linear tetrapyrrole chromophore that, upon absorption of red or far-red light, undergoes a cistrans isomerization that leads to a conformational change in the holoprotein. The conformation and type of Bph affects the expression of genes. The linear tetrapyrrole bound by Bphs is thought to come from O2-dependent cleavage of heme by a heme oxygenase. We have discovered that the absence of O2 does not inhibit the normal function of two Bphs in the regulation of Rhodopseudomonas palustris light-harvesting complexes. These observations imply that: (i) a linear tetrapyrrole can be made anaerobically, either through anaerobic heme cleavage by a novel enzyme or directly from the heme precursor hydroxymethylbilane without ring cleavage; or (ii) that Bph-dependent signal transduction does not require a chromophore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aklujkar M, Prince RC, Beatty JT (2006) The photosynthetic deficiency due to puhC gene deletion in Rhodobacter capsulatus suggests a PuhC protein-dependent process of RC/LH1/PufX complex reorganization. Arch Biochem Biophys 454:59–71

    Article  CAS  PubMed  Google Scholar 

  2. Bhoo SH, Davis SJ, Walker J, Karniol B, Vierstra RD (2001) Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature 414:776–779

    Article  CAS  PubMed  Google Scholar 

  3. Braatsch S, Bernstein JR, Lessner F, Morgan J, Liao JC, Harwood CS, Beatty JT (2006) Rhodopseudomonas palustris CGA009 has two functional ppsR genes, each of which encodes a repressor of photosynthesis gene expression. Biochemistry 45:14441–14451

    Article  CAS  PubMed  Google Scholar 

  4. Brueggemann H, Bauer R, Raffestin S, Gottschalk G (2004) Characterization of a heme oxygenase of Clostridium tetani and its possible role in oxygen tolerance. Arch Microbiol 182:259–263

    CAS  Google Scholar 

  5. Bullough PA, Qian P, Hunter CN (2009) Reaction center-light-harvesting core complexes of purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer, Netherlands, pp 155–179

    Chapter  Google Scholar 

  6. Evans K, Fordham-Skelton AP, Mistry H, Reynolds CD, Lawless AM, Papiz MZ (2005) A bacteriophytochrome regulates the synthesis of LH4 complexes in Rhodopseudomonas palustris. Photosynth Res 85:169–180

    Article  CAS  PubMed  Google Scholar 

  7. Evans K, Georgiou T, Hilton T, Fordham-Skelton AP, Papiz MZ (2009) Bacteriophytochromes control photosynthesis in Rhodopseudomonas palustris. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer, Netherlands, pp 799–809

    Chapter  Google Scholar 

  8. Gabrielsen M, Gardiner AT, Cogdell RJ (2009) Peripheral complexes of purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer, Netherlands, pp 135–153

    Chapter  Google Scholar 

  9. Giraud E et al (2005) A new type of bacteriophytochrome acts in tandem with a classical bacteriophytochrome to control the antennae synthesis in Rhodopseudomonas palustris. J Biol Chem 280:32389–32397

    Article  CAS  PubMed  Google Scholar 

  10. Giraud E, Verméglio A (2008) Bacteriophytochromes in anoxygenic photosynthetic bacteria. Photosynth Res 97:141–153

    Article  CAS  PubMed  Google Scholar 

  11. Kim M-K, Harwood CS (1991) Regulation of benzoate-CoA ligase in Rhodopseudomonas palustris. FEMS Microbiol Lett 83:199–204

    CAS  Google Scholar 

  12. Larimer FW et al (2004) The genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature Biotechnol 22:55–61

    Article  CAS  Google Scholar 

  13. Puri S, O’Brian MR (2006) The hmuQ and hmuD genes from Bradyrhizobium japonicum encode heme-degrading enzymes. J Bacteriol 188:6476–6482

    Article  CAS  PubMed  Google Scholar 

  14. Quandt J, Hynes MF (1993) Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127:15–21

    Article  CAS  PubMed  Google Scholar 

  15. Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1:37–45

    Article  Google Scholar 

  16. Sugishima M, Omata Y, Kakuta Y, Sakamoto H, Noguchi M, Fukuyama K (2000) Crystal structure of rat heme oxygenase-1 in complex with heme. FEBS Lett 471:61–66

    Article  CAS  PubMed  Google Scholar 

  17. Tharia HA, Nightingale TD, Papiz MZ, Lawless AM (1999) Characterisation of hydrophobic peptides by RP-HPLC from different spectral forms of LH2 isolated from Rps. palustris. Photosynth Res 61:157–167

    Article  CAS  Google Scholar 

  18. Wegele R, Tasler R, Zeng Y, Rivera M, Frankenberg-Dinkel N (2004) The heme oxygenase(s)-phytochrome system of Pseudomonas aeruginosa. J Biol Chem 279:45791–45802

    Article  CAS  PubMed  Google Scholar 

  19. Willows RD, Kriegel AM (2009) Biosynthesis of bacteriochlorophylls in purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer, Netherlands, pp 57–79

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was supported by a Universitas 21 scholarship to ML and an NSERC Discovery grant to JTB. SN thanks Boehringer Ingelheim Fonds Travel Allowances for support. We thank L. Eltis for use of his anaerobic glovebox, and J. Johnson for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Thomas Beatty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Noll, S. & Beatty, J.T. Bacteriophytochrome-Dependent Regulation of Light-Harvesting Complexes in Rhodopseudomonas palustris Anaerobic Cultures. Curr Microbiol 61, 429–434 (2010). https://doi.org/10.1007/s00284-010-9634-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9634-1

Keywords

Navigation